A369417 Powerful numbers k with multiple distinct prime factors such that rad(k) is not a primorial, where rad(k) = A007947(k).
100, 196, 200, 225, 392, 400, 441, 484, 500, 675, 676, 784, 800, 968, 1000, 1089, 1125, 1156, 1225, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1764, 1936, 2000, 2025, 2116, 2312, 2500, 2601, 2704, 2744, 2888, 3025, 3087, 3136, 3200, 3249, 3267, 3364, 3375, 3528
Offset: 1
Keywords
Examples
Let S = A366413 = {A120944 \ A002110}. This sequence is the union of the following infinite sets: S(1)^2 * A003592 = 10^2 * A003592 = {100, 200, 400, 500, 800, 1000, ...} = { m*S(1)^2 : rad(m) | S(1) }. S(2)^2 * A003591 = 14^2 * A003591 = {196, 392, 784, 1372, 1568, ...} = { m*S(2)^2 : rad(m) | S(2) }. S(3)^2 * A003593 = 15^2 * A003593 = {225, 675, 1125, 2025, 3375, ...} = { m*S(3)^2 : rad(m) | S(3) }, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{nn = 2^14}, Select[ Select[ Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Not@*PrimePowerQ], Nand[EvenQ[#], Union@ Differences@ PrimePi[FactorInteger[#][[All, 1]]] == {1}] &] ]
Comments