cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369428 The number of exponents in the prime factorization of n that are squares.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 3, 1, 0, 2, 2, 2, 0, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 0, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2024

Keywords

Comments

First differs from A125070 at n = 64.

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(issqr(i[2]), 1, 0), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 23 2024
  • Mathematica
    f[p_, e_] := If[IntegerQ[Sqrt[e]], 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> if(issquare(x), 1, 0), factor(n)[, 2]));

Formula

Additive with a(p^e) = A010052(e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B - C), where B is Mertens's constant (A077761) and C = P(2) + Sum_{k>=2} (P(k^2+1) - P(k^2)) = 0.40999077396414387641..., and P(s) is the prime zeta function.