cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369436 Number of 2-Motzkin meanders with catastrophes of length n.

Original entry on oeis.org

1, 3, 10, 36, 136, 529, 2095, 8393, 33885, 137547, 560544, 2291181, 9386584, 38525224, 158350133, 651645511, 2684323326, 11066714500, 45656997415, 188475894929, 778444106703, 3216562337420, 13296099775859, 54979806370840, 227410731720624, 940875886301665
Offset: 0

Views

Author

Florian Schager, Jan 23 2024

Keywords

Comments

A 2-Motzkin meander is a lattice path that does not go below the x-axis. with steps U = (1,1), D = (1,-1) and two copies R = (1,0) and B = (1,0), i.e. red and blue level steps.
A catastrophe is a step C = (1,-k) from altitude k to altitude 0 for k > 1.

Examples

			For n = 2 the a(2) = 10 solutions are UU, UR, UB, UD, RU, RR, RB, BU, BR, BB.
For n = 3 the a(3) = 36 solutions are UUU, UUR, UUB, UUD, UUC, URU, URR, URB, URD, UBU, UBR, UBB, UBD, UDU, UDR, UDB, RUU, RUR, RUB, RUD, RRU, RRR, RRB, RBU, RBR, RBB, BUU, BUR, BUB, BUD, BRU, BRR, BRB, BBU, BBR, BBB.
		

Crossrefs

Cf. A274115 (Dyck meanders).
Cf. A054391 (Motzkin meanders).

Programs

  • Maple
    K := 1 - z*(1/u + 2 + u);
    u1 := solve(K, u)[2];
    M := (1 - u1)/(1 - 4*z);
    E := u1/z;
    M1 := z*E^2;Q := z*(M - E - M1);
    series(M/(1 - Q), z, 30);
  • PARI
    my(N=44,z='z+O('z^N),S=sqrt(1-4*z)); Vec((1 - 4*z - S)*z/(5*S*z^2 + 12*z^3 - 5*z*S - 15*z^2 + S + 7*z - 1))

Formula

G.f.: (1 - 4*z - sqrt(1 - 4*z))*z/(5*sqrt(1 - 4*z)*z^2 + 12*z^3 - 5*z*sqrt(-4*z + 1) - 15*z^2 + sqrt(-4*z + 1) + 7*z - 1).
D-finite with recurrence n*a(n) +4*(-3*n+2)*a(n-1) +(53*n-70)*a(n-2) +(-107*n+210)*a(n-3) +(101*n-268)*a(n-4) +18*(-2*n+7)*a(n-5)=0. - R. J. Mathar, Jan 28 2024