Florian Schager has authored 4 sequences.
A369982
Number of Dyck bridges with resets from any height to zero from (0,0) to (n,0).
Original entry on oeis.org
1, 1, 5, 11, 39, 105, 335, 965, 2965, 8755, 26517, 79047, 238065, 712347, 2140473, 6414555, 19256535, 57743865, 173280215, 519743405, 1559414971, 4677875401, 14034331635, 42101584041, 126307456279, 378916960525, 1136761282175, 3410263045325, 10230829252575
Offset: 0
For n = 3 the a(3) = 11 solutions are UUR, UDR, URR, DUR, DDR, DRR, RUD, RUR, RDU, RDR, RRR.
Cf.
A369316 (for a different model of resets to zero).
-
K := 1 - z*(u + 1/u);
v1, u1 := solve(K, u);
B := -z*diff(v1, z)/v1;
W := 1/(1 - 2*z);
series(B/(-W*z + 1), z, 30);
# second Maple program:
b:= proc(x, y) option remember; `if`(x=0, `if`(y=0, 1, 0),
b(x-1, 0)+b(x-1, abs(y-1))+b(x-1, y+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Feb 07 2024
-
b[x_, y_] := b[x, y] = If[x == 0, If[y == 0, 1, 0],
b[x - 1, 0] + b[x - 1, Abs[y - 1]] + b[x - 1, y + 1]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Feb 22 2025, after Alois P. Heinz *)
A369432
Number of Dyck excursions with catastrophes from (0,0) to (n,0).
Original entry on oeis.org
1, 1, 3, 6, 16, 37, 95, 230, 582, 1434, 3606, 8952, 22446, 55917, 140007, 349374, 874150, 2183230, 5460506, 13643972, 34118328, 85270626, 213205958, 532926716, 1332420796, 3330739972, 8327221380, 20816939100, 52043684970, 130105200765, 325267849335, 813155081070
Offset: 0
For n = 3 the a(3) = 6 solutions are UUC, UDC, UCC, CUD, CUC, CCC.
For n = 4 the a(4) = 16 solutions are UUUC, UUDD, UUDC, UUCC, UDUD, UDUC, UDCC, UCUD, UCUC, UCCC, CUUC, CUDC, CUCC, CCUD, CCUC, CCCC.
Cf.
A054341 (Dyck meanders with catastrophes).
Cf.
A224747 (different model of catastrophes).
-
u1 := solve(1 - z*(1/u + u), u)[2];
M := (1 - u1)/(1 - 2*z);
E := u1/z;
F := E/(-M*z + 1);
series(F, z, 33);
# second Maple program:
b:= proc(x, y) option remember; `if`(x=0, `if`(y=0, 1, 0),
b(x-1, 0)+`if`(y>0, b(x-1, y-1), 0)+b(x-1, y+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..31); # Alois P. Heinz, Jan 23 2024
-
b[x_, y_] := b[x, y] = If[x == 0, If[y == 0, 1, 0], b[x-1, 0] + If[y > 0, b[x-1, y-1], 0] + b[x-1, y+1]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 24 2025, after Alois P. Heinz *)
-
my(N=44,z='z+O('z^N)); Vec((1 - sqrt(1 -4*z^2))*(2*z - 1)/(z^2*(6*z - 3 + sqrt(1 - 4*z^2))))
A369436
Number of 2-Motzkin meanders with catastrophes of length n.
Original entry on oeis.org
1, 3, 10, 36, 136, 529, 2095, 8393, 33885, 137547, 560544, 2291181, 9386584, 38525224, 158350133, 651645511, 2684323326, 11066714500, 45656997415, 188475894929, 778444106703, 3216562337420, 13296099775859, 54979806370840, 227410731720624, 940875886301665
Offset: 0
For n = 2 the a(2) = 10 solutions are UU, UR, UB, UD, RU, RR, RB, BU, BR, BB.
For n = 3 the a(3) = 36 solutions are UUU, UUR, UUB, UUD, UUC, URU, URR, URB, URD, UBU, UBR, UBB, UBD, UDU, UDR, UDB, RUU, RUR, RUB, RUD, RRU, RRR, RRB, RBU, RBR, RBB, BUU, BUR, BUB, BUD, BRU, BRR, BRB, BBU, BBR, BBB.
-
K := 1 - z*(1/u + 2 + u);
u1 := solve(K, u)[2];
M := (1 - u1)/(1 - 4*z);
E := u1/z;
M1 := z*E^2;Q := z*(M - E - M1);
series(M/(1 - Q), z, 30);
-
my(N=44,z='z+O('z^N),S=sqrt(1-4*z)); Vec((1 - 4*z - S)*z/(5*S*z^2 + 12*z^3 - 5*z*S - 15*z^2 + S + 7*z - 1))
A369316
Number of Dyck bridges with resets to zero from (0,0) to (n,0).
Original entry on oeis.org
1, 0, 2, 2, 8, 14, 40, 84, 216, 486, 1200, 2780, 6744, 15836, 38096, 90056, 215728, 511750, 1223136, 2907052, 6939544, 16511028, 39386384, 93768696, 223589648, 532502748, 1269433376, 3023953560, 7207744496, 17172061944, 40926792224, 97513876880, 232395416672
Offset: 0
For n = 4 the a(4) = 8 paths are UUUR, UUDD, UDUD, UDDU, DUUD, DUDU, DDUU, DDDR.
-
K := 1 - z*(u + 1/u);
v1, u1 := solve(K, u);
B := -z*diff(v1, z)/v1;
W := 1/(1 - 2*z);
W1 := -z*diff(v1, z)/v1^2;
Wminus1 := z*diff(u1, z);
Q := z*(W - B - W1 - Wminus1);
series(B/(1 - Q), z, 40);
# second Maple program:
b:= proc(x, y) option remember; `if`(x=0, `if`(y=0, 1, 0),
`if`(y>1, b(x-1, 0), 0)+b(x-1, abs(y-1))+b(x-1, y+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Jan 19 2024
-
b[x_, y_] := b[x, y] = If[x == 0, If[y == 0, 1, 0],
If[y > 1, b[x - 1, 0], 0] + b[x - 1, Abs[y - 1]] + b[x - 1, y + 1]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Feb 23 2025, after Alois P. Heinz *)
-
seq(n) = my(r=sqrt(1 - 4*x^2 + O(x*x^n))); Vec((1 - 2*x)*(1 + r)^2/(2*(1 - 2*x - 2*x^2 + 2*x^3)*r + 2 - 4*x - 8*x^2 + 12*x^3 + 8*x^4)) \\ Andrew Howroyd, Jan 19 2024
Comments