cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A369982 Number of Dyck bridges with resets from any height to zero from (0,0) to (n,0).

Original entry on oeis.org

1, 1, 5, 11, 39, 105, 335, 965, 2965, 8755, 26517, 79047, 238065, 712347, 2140473, 6414555, 19256535, 57743865, 173280215, 519743405, 1559414971, 4677875401, 14034331635, 42101584041, 126307456279, 378916960525, 1136761282175, 3410263045325, 10230829252575
Offset: 0

Views

Author

Florian Schager, Feb 07 2024

Keywords

Comments

A Dyck bridge is a lattice path with steps U = (1,1) and D = (1,-1) that is allowed to go below the x-axis and ends at altitude 0.
A reset to zero is a step R = (1,-h) at altitude h for any integer h.

Examples

			For n = 3 the a(3) = 11 solutions are UUR, UDR, URR, DUR, DDR, DRR, RUD, RUR, RDU, RDR, RRR.
		

Crossrefs

Cf. A369316 (for a different model of resets to zero).

Programs

  • Maple
    K := 1 - z*(u + 1/u);
    v1, u1 := solve(K, u);
    B := -z*diff(v1, z)/v1;
    W := 1/(1 - 2*z);
    series(B/(-W*z + 1), z, 30);
    # second Maple program:
    b:= proc(x, y) option remember; `if`(x=0, `if`(y=0, 1, 0),
          b(x-1, 0)+b(x-1, abs(y-1))+b(x-1, y+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Feb 07 2024
  • Mathematica
    b[x_, y_] := b[x, y] = If[x == 0, If[y == 0, 1, 0],
       b[x - 1, 0] + b[x - 1, Abs[y - 1]] + b[x - 1, y + 1]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Feb 22 2025, after Alois P. Heinz *)

Formula

G.f.: (2*z-1)/((3*z-1)*sqrt(1-4*z^2)).
a(n) ~ 3^n/sqrt(5).
Showing 1-1 of 1 results.