A369451 Partial sums of A369461, where A369461(n) = number of representations of 12n-5 as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.
0, 0, 0, 0, 1, 1, 1, 2, 3, 3, 3, 3, 5, 5, 5, 6, 7, 8, 8, 8, 10, 10, 11, 11, 11, 11, 11, 12, 14, 15, 15, 15, 18, 18, 18, 18, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 25, 25, 26, 26, 27, 27, 30, 30, 30, 31, 32, 34, 34, 34, 36, 37, 38, 38, 39, 39, 39, 40, 42, 42, 42, 43, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 49, 50, 52
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
PARI
up_to = 1024; \\ 2*(10^4); A369054(n) = if(3!=(n%4),0, my(v = [3,3], ip = #v, r, c=0); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r),c++)); if(!ip, return(c)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1]))); A369461(n) = A369054((12*n)-5); A369451list(up_to) = { my(v=vector(up_to)); s = 0; for(n=1,up_to,s+=A369461(n); v[n] = s); (v); }; v369451 = A369451list(up_to); A369451(n) = v369451[n];
Comments