cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369453 Dirichlet inverse of A038548, where A038548 is the number of divisors of n that are at most sqrt(n).

Original entry on oeis.org

1, -1, -1, -1, -1, 0, -1, 1, -1, 0, -1, 2, -1, 0, 0, 0, -1, 2, -1, 2, 0, 0, -1, 0, -1, 0, 1, 2, -1, 2, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 2, -1, 2, 2, 0, -1, -1, -1, 2, 0, 2, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 2, 0, 0, 2, -1, 2, 0, 2, -1, -3, -1, 0, 2, 2, 0, 2, -1, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 2, 0, 0, 0, 0, -1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 27 2024

Keywords

Crossrefs

Cf. A038548.
Cf. also A359763, A369454.

Programs

  • PARI
    A038548(n) = if( n<1, 0, sumdiv(n, d, d*d <= n))
    memoA369453 = Map();
    A369453(n) = if(1==n,1,my(v); if(mapisdefined(memoA369453,n,&v), v, v = -sumdiv(n,d,if(dA038548(n/d)*A369453(d),0)); mapput(memoA369453,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA038548(n/d) * a(d).
Dirichlet g.f.: 2/(zeta(s)^2 + zeta(2*s)).