cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369466 Lexicographically earliest infinite sequence such that a(i) = a(j) => A369465(i) = A369465(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 5, 2, 2, 2, 5, 2, 6, 2, 2, 4, 2, 1, 7, 2, 8, 3, 2, 2, 9, 2, 2, 5, 2, 2, 10, 2, 2, 2, 7, 5, 11, 2, 2, 6, 9, 2, 12, 2, 2, 4, 2, 2, 13, 1, 14, 7, 2, 2, 15, 8, 2, 3, 2, 2, 16, 2, 14, 9, 2, 2, 17, 2, 2, 5, 12, 2, 18, 2, 2, 10, 11, 2, 19, 2, 20, 2, 2, 7, 21, 5, 2, 11
Offset: 1

Views

Author

Antti Karttunen, Jan 27 2024

Keywords

Comments

Restricted growth sequence transform of A369465.
For all i, j >= 1: A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A369465(n) = A003415(A000265(n));
    v369466 = rgs_transform(vector(up_to, n, A369465(n)));
    A369466(n) = v369466[n];

A369467 Lexicographically earliest infinite sequence such that a(i) = a(j) => A369465(i) = A369465(j) and A369465(A163511(i)) = A369465(A163511(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 5, 2, 6, 2, 7, 1, 8, 4, 9, 3, 10, 5, 11, 2, 12, 6, 13, 2, 5, 7, 2, 1, 14, 8, 15, 4, 16, 9, 17, 3, 18, 10, 19, 5, 20, 11, 21, 2, 22, 12, 23, 6, 24, 13, 25, 2, 26, 5, 27, 7, 11, 2, 28, 1, 29, 14, 30, 8, 31, 15, 32, 4, 33, 16, 34, 9, 35, 17, 36, 3, 37, 18, 38, 10, 39, 19, 40, 5, 41, 20, 42, 11, 43, 21, 44, 2, 45, 22
Offset: 1

Views

Author

Antti Karttunen, Jan 28 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A369458(n), A369465(n)], or equally, of the ordered pair [A369459(n), A369466(n)].
For all i, j >= 1: A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A369465(n) = A003415(A000265(n));
    Aux369467(n) = [A369465(n), A369465(A163511(n))];
    v369467 = rgs_transform(vector(up_to, n, Aux369467(n)));
    A369467(n) = v369467[n];

A369458 Arithmetic derivative of the odd part of n, permuted by A163511 ("Doudna-sequence mirrored").

Original entry on oeis.org

0, 0, 0, 1, 0, 6, 1, 1, 0, 27, 6, 10, 1, 8, 1, 1, 0, 108, 27, 75, 6, 55, 10, 14, 1, 39, 8, 12, 1, 10, 1, 1, 0, 405, 108, 500, 27, 350, 75, 147, 6, 240, 55, 119, 10, 91, 14, 22, 1, 162, 39, 95, 8, 71, 12, 18, 1, 51, 10, 16, 1, 14, 1, 1, 0, 1458, 405, 3125, 108, 2125, 500, 1372, 27, 1425, 350, 1078, 75, 784, 147, 363
Offset: 0

Views

Author

Antti Karttunen, Jan 28 2024

Keywords

Crossrefs

Cf. A000265, A003415, A163511, A369459 (rgs-transform), A369465.

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A369458(n) = A003415(A000265(A163511(n)));

Formula

a(n) = A369465(A163511(n)).

A369459 Lexicographically earliest infinite sequence such that a(i) = a(j) => A369458(i) = A369458(j) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 5, 2, 6, 2, 2, 1, 7, 4, 8, 3, 9, 5, 10, 2, 11, 6, 12, 2, 5, 2, 2, 1, 13, 7, 14, 4, 15, 8, 16, 3, 17, 9, 18, 5, 19, 10, 20, 2, 21, 11, 22, 6, 23, 12, 24, 2, 25, 5, 26, 2, 10, 2, 2, 1, 27, 13, 28, 7, 29, 14, 30, 4, 31, 15, 32, 8, 33, 16, 34, 3, 35, 17, 36, 9, 37, 18, 38, 5, 39, 19, 40, 10, 41, 20, 42, 2
Offset: 0

Views

Author

Antti Karttunen, Jan 28 2024

Keywords

Comments

Restricted growth sequence transform of A369458.
For all i, j >= 1:
A003602(i) = A003602(j) => A369467(i) = A369467(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A369458(n) = A003415(A000265(A163511(n)));
    v369459 = rgs_transform(vector(1+up_to,n,A369458(n-1)));
    A369459(n) = v369459[1+n];

Formula

For all n > 0, a(n) = a(2*n) = a(A000265(n)).
Showing 1-4 of 4 results.