cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369473 Number of chiral pairs of polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}.

Original entry on oeis.org

7, 50, 448, 3810, 34200, 314655, 2982040, 28897440, 285577500, 2868769045, 29227672960, 301429078080, 3141983233130, 33059729519325, 350763428176480, 3749420512083472, 40348040467611800, 436827334389425980
Offset: 4

Views

Author

Robert A. Russell, Jan 23 2024

Keywords

Comments

A stereographic projection of the {6,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Crossrefs

Polyominoes: A221184(n-1) (oriented), A004127 (unoriented), A143546 (achiral), A369471 {5,oo}.

Programs

  • Mathematica
    p=6; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2, (n-1)/2]/((p-1)n+1)], Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+DivisorSum[GCD[p, n-1], EulerPhi[#]Binomial[((p-1)n+1)/#, (n-1)/#]/((p-1)n+1)&, #>1&])/2, {n, 4, 30}]

Formula

a(n) = A221184(n-1) - A004127(n) = (A221184(n-1) - A143546(n)) / 2 = A004127(n) - A143546(n).