cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369481 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^3)) ).

Original entry on oeis.org

1, 2, 5, 15, 51, 187, 718, 2844, 11530, 47612, 199576, 847013, 3632468, 15717041, 68527255, 300780438, 1327939406, 5893299392, 26275243626, 117635107818, 528631769323, 2383660351991, 10781500113896, 48903885040638, 222400899237943, 1013841791472632
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^3)))/x)
    
  • PARI
    a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(2*n-k+2,n-3*k).

A370184 Coefficient of x^n in the expansion of ( (1+x)^2 * (1+x+x^3) )^n.

Original entry on oeis.org

1, 3, 15, 87, 539, 3458, 22659, 150594, 1011131, 6841779, 46577430, 318654900, 2188931699, 15087882943, 104301302218, 722840860787, 5020500381131, 34937184351049, 243539967641271, 1700255814753027, 11886457488148674, 83200718154710607, 583026777685802256
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(3*n-k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^3)) ). See A369482.
Showing 1-2 of 2 results.