cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A369484 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^3)^2) ).

Original entry on oeis.org

1, 3, 12, 57, 301, 1700, 10045, 61303, 383335, 2443113, 15811317, 103627692, 686402602, 4587643765, 30900426417, 209539509967, 1429344492215, 9801262309209, 67523359213569, 467136798336153, 3243948604314619, 22604271635042853, 158001453530915361
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^3)^2))/x)
    
  • PARI
    a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(3*n-k+3,n-3*k).

A369485 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^3)^2) ).

Original entry on oeis.org

1, 4, 22, 142, 1007, 7590, 59683, 484112, 4021061, 34029532, 292373296, 2543542676, 22360917140, 198341377680, 1772860026933, 15952960500612, 144397901220980, 1313835276189792, 12009823111155481, 110240431974732436, 1015727265740887873
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+x+x^3)^2))/x)
    
  • PARI
    a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(4*n-k+4,n-3*k).

A370185 Coefficient of x^n in the expansion of (1+x+x^3)^(2*n).

Original entry on oeis.org

1, 2, 6, 26, 126, 612, 2970, 14534, 71838, 357884, 1793296, 9026976, 45612450, 231224060, 1175422590, 5989693176, 30586693182, 156483812892, 801908994852, 4115509738188, 21149522157816, 108817959549416, 560500440662872, 2889915938877078, 14913928051929426
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=2, u=0) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,k) * binomial(2*n-k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / (1+x+x^3)^2 ). See A369483.

A372375 Expansion of (1/x) * Series_Reversion( x * (1+x) / (1+x+x^3)^2 ).

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 54, 161, 470, 1347, 4007, 12199, 37141, 113802, 352905, 1101969, 3455220, 10891968, 34515825, 109814395, 350616323, 1123368287, 3610647348, 11637410625, 37605280548, 121812321775, 395455199269, 1286446544052, 4192913001804, 13690359696969
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1+x)/(1+x+x^3)^2)/x)
    
  • PARI
    a(n, s=3, t=2, u=-1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(n-k+1,n-3*k).

A369507 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3+x^3)^2 ).

Original entry on oeis.org

1, 6, 51, 508, 5535, 63888, 767689, 9502254, 120324606, 1551362160, 20296839585, 268785905790, 3595951246855, 48528885742200, 659856371680971, 9031161933443468, 124319953470044970, 1720113658097639532, 23908612149570793386, 333680424238179500976
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3+x^3)^2)/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n+2, k)*binomial(6*n-3*k+6, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(6*n-3*k+6,n-3*k).
Showing 1-5 of 5 results.