A369501 Decimal expansion of the integral of the reciprocal of the Cantor function.
3, 3, 6, 4, 6, 5, 0, 7, 2, 8, 1, 0, 0, 9, 2, 5, 1, 6, 0, 8, 3, 8, 9, 3, 4, 9, 6, 2, 8, 9
Offset: 1
Examples
3.36465072810092516083893496289...
Links
- Harold G. Diamond and Bruce Reznick, Problem 10621, Problems and Solutions, The American Mathematical Monthly, Vol. 104, No. 9 (1997), p. 870; Cantor's Singular Moments, Solutions to Problem 10621 by Kenneth F. Andersen and Omran Kouba, ibid., Vol. 106, No. 2 (1999), pp. 175-176.
- Steven Finch, Cantor-solus and Cantor-multus Distributions, arXiv:2003.09458 [math.CO], 2020.
- Russell A. Gordon, Some Integrals Involving the Cantor Function, The American Mathematical Monthly, Vol. 116, No. 3 (2009), pp. 218-227; alternative link.
- Helmut Prodinger, On Cantor's singular moments, Southwest Journal of Pure and Applied Mathematics, Vol. 2000, Issue 1 (July 2000), pp. 27-29; arXiv preprint, arXiv:math/9904072 [math.CO], 1999.
- Helmut Prodinger, Digits and beyond, in: B. Chauvin, P. Flajolet, D. Gardy, and A. Mokkadem (eds.), Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, Birkhäuser, Basel (2012), pp. 355-377.
- Eric Weisstein's World of Mathematics, Cantor Function.
- Wikipedia, Cantor function.