A369510 Expansion of (1/x) * Series_Reversion( x * ((1-x)^2-x^2)^2 ).
1, 4, 28, 240, 2288, 23296, 248064, 2728704, 30764800, 353633280, 4128783360, 48827351040, 583674642432, 7041154416640, 85610725769216, 1048040981594112, 12907157115568128, 159802897621319680, 1987875305403187200, 24833149969036738560, 311409431144819589120
Offset: 0
Keywords
References
- Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, Ars Combinatoria, 88 (2008), 109-124.
Links
- CombOS - Combinatorial Object Server, Generate k-ary trees and dissections
- Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, arXiv:math/0407280 [math.CO], 2004.
- Index entries for reversions of series
Crossrefs
Programs
-
PARI
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^2-x^2)^2)/x)
-
PARI
a(n) = sum(k=0, n\2, binomial(2*n+k+1, k)*binomial(5*n+3, n-2*k))/(n+1);
Formula
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(5*n+3,n-2*k).
From Torsten Muetze, May 08 2024: (Start)
a(n) = 2^n/(n+1) * binomial(3n+1,n).
a(n) = 2^n*A006013(n). (End)
Comments