cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369518 Array read by downward antidiagonals: A(n,k) = Sum_{j=0..k + (k mod 3) + 1} A(n-1,j) with A(0,k) = 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 17, 23, 1, 5, 33, 80, 103, 1, 7, 24, 184, 408, 511, 1, 9, 41, 121, 1054, 2208, 2719, 1, 8, 63, 235, 643, 6196, 12486, 15205, 1, 10, 51, 411, 1363, 3571, 37244, 72992, 88197, 1, 12, 74, 309, 2625, 8057, 20543, 228092, 437821, 526018
Offset: 0

Views

Author

Mikhail Kurkov, Jan 25 2024

Keywords

Examples

			Array begins:
==================================================
n\k|    0     1     2     3     4      5     6 ...
---+----------------------------------------------
0  |    1     1     1     1     1      1     1 ...
1  |    2     4     6     5     7      9     8 ...
2  |    6    17    33    24    41     63    51 ...
3  |   23    80   184   121   235    411   309 ...
4  |  103   408  1054   643  1363   2625  1861 ...
5  |  511  2208  6196  3571  8057  16701 11296 ...
6  | 2719 12486 37244 20543 48540 106560 69376 ...
  ...
		

Crossrefs

Column k=0 is A301897 (with different offset).

Programs

  • PARI
    A(m, n=m)={my(r=vectorv(m+1), v=vector(n+3*m+1, k, 1)); r[1] = v[1..n+1];
    for(i=1, m, v=vector(#v-3, k, sum(j=1, k + (k-1)%3 + 1, v[j])); r[1+i] = v[1..n+1]); Mat(r)}
    { A(6) }

Formula

A(n,3k) = A(n,3k-1) - A(n-1,3k+2), A(n,3k+1) = A(n,3k) + A(n-1,3k+2) + A(n-1,3k+3), A(n,3k+2) = A(n, 3k+1) + A(n-1,3k+4) + A(n-1,3k+5) with A(n,0) = A(n-1,0) + A(n-1,1), A(0,k) = 1. - Mikhail Kurkov, Nov 24 2024