cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369530 Expansion of g.f. A(x) satisfying A(x) = x*(1 + A(x))/(1 - x*(x + A(x))/(1 - x*(x^2 + A(x))/(1 - x*(x^3 + A(x))/(1 - ...)))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 6, 18, 49, 150, 454, 1442, 4599, 15016, 49400, 164702, 553109, 1873688, 6386159, 21902331, 75495005, 261468180, 909289327, 3174239650, 11118613510, 39067873798, 137664509998, 486364771006, 1722453449521, 6113657733615, 21744596455289, 77488254484727, 276628979514476
Offset: 1

Views

Author

Paul D. Hanna, Feb 06 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 6*x^4 + 18*x^5 + 49*x^6 + 150*x^7 + 454*x^8 + 1442*x^9 + 4599*x^10 + 15016*x^11 + 49400*x^12 + ...
where A = A(x) satisfies the continued fraction
A(x) = x*(1 + A)/(1 - x*(x + A)/(1 - x*(x^2 + A)/(1 - x*(x^3 + A)/(1 - x*(x^4 + A)/(1 - x*(x^5 + A)/(1 - x*(x^6 + A)/(1 - x*(x^7 + A)/( ... ))))))))
which yields a power series expansion in x starting with
A(x) = x*(1 + A) + x^2*(A + A^2) + x^3*(1 + A + 2*A^2 + 2*A^3) + x^4*(3*A + 3*A^2 + 5*A^3 + 5*A^4) + x^5*(1 + 2*A + 10*A^2 + 9*A^3 + 14*A^4 + 14*A^5) + x^6*(1 + 6*A + 10*A^2 + 33*A^3 + 28*A^4 + 42*A^5 + 42*A^6) + x^7*(1 + 8*A + 28*A^2 + 41*A^3 + 110*A^4 + 90*A^5 + 132*A^6 + 132*A^7) + x^8*(2 + 11*A + 43*A^2 + 116*A^3 + 157*A^4 + 372*A^5 + 297*A^6 + 429*A^7 + 429*A^8) + ...
the coefficients of which involve the Catalan numbers (A000108) and A186505.
The limit of iterating the above power series, substituting A with A(x) upon each pass, yields an expansion of A(x) as a power series in x alone.
SPECIFIC VALUES.
A(1/6) = 0.21744636748805217628418218576669778...
A(1/5) = 0.28772045526015966809965759522703662...
A(1/4) = 0.46334623036210313649395429181658971...
A(0.266) = 0.643762817198125342775865466180469...
A(x) at x = 1/3 diverges.
		

Crossrefs

Programs

  • PARI
    \\ Set N to desired number of terms
    {my(N = 50, A = x + x*O(x^N), Q = vector(N));
    for(i=1,N, Q[1] = x; for(k=1,N-1,m=N-k; Q[k+1] = x*(x^m + A)/(1 - Q[k]));
    A = x*(1 + A)/(1 - Q[N]) + x*O(x^N) ); Vec(A)}

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = x*(1 + A(x))/(1 - x*(x + A(x))/(1 - x*(x^2 + A(x))/(1 - x*(x^3 + A(x))/(1 - ...)))), a continued fraction.
(2) A(x) = F(0) where F(n) = x*(x^n + A(x))/(1 - F(n+1)) for n >= 0.
a(n) ~ c * d^n / n^(3/2), where d = 3.756512005147339026495976161... and c = 0.25870274493294899798568836... - Vaclav Kotesovec, Feb 19 2024