cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369557 Expansion of Sum_{n>=0} Product_{k=0..n} (x^k + x^(n-k)).

Original entry on oeis.org

3, 4, 2, 6, 3, 4, 9, 4, 8, 6, 13, 8, 12, 12, 10, 22, 13, 22, 14, 26, 20, 34, 23, 32, 36, 34, 42, 36, 59, 38, 67, 46, 75, 56, 82, 66, 98, 84, 100, 102, 105, 126, 116, 152, 119, 184, 136, 202, 154, 230, 181, 256, 203, 276, 250, 306, 285, 326, 342, 348, 398, 374, 463, 404, 525, 438, 610, 486, 666, 542, 744, 610
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2024

Keywords

Examples

			G.f.: A(x) = 3 + 4*x + 2*x^2 + 6*x^3 + 3*x^4 + 4*x^5 + 9*x^6 + 4*x^7 + 8*x^8 + 6*x^9 + 13*x^10 + 8*x^11 + 12*x^12 + ...
where
A(x) = (1 + 1) + (1 + x)*(x + 1) + (1 + x^2)*(x + x)*(x^2 + 1) + (1 + x^3)*(x + x^2)*(x^2 + x)*(x^3 + 1) + (1 + x^4)*(x + x^3)*(x^2 + x^2)*(x^3 + x)*(x^4 + 1) + (1 + x^5)*(x + x^4)*(x^2 + x^3)*(x^3 + x^2)*(x^4 + x)*(x^5 + 1) + ...
Also,
A(1/x) = (1 + 1) + (1 + x)*(x + 1)/x^2 + (1 + x^2)*(x + x)*(x^2 + 1)/x^6 + (1 + x^3)*(x + x^2)*(x^2 + x)*(x^3 + 1)/x^12 + (1 + x^4)*(x + x^3)*(x^2 + x^2)*(x^3 + x)*(x^4 + 1)/x^20 + (1 + x^5)*(x + x^4)*(x^2 + x^3)*(x^3 + x^2)*(x^4 + x)*(x^5 + 1)/x^30 + ...
For example, at x = 1/2,
A(1/2) = 2 + 9/2^2 + 100/2^6 + 2916/2^12 + 231200/2^20 + 50808384/2^30 + 31258240000/2^42 + 54112148361216/2^56 + 264265663201280000/2^72 + ... + A369673(n)/2^(n*(n+1)) + ... = 6.80013983505192354264...
SPECIFIC VALUES.
A(t) = 4 at t = 0.21135479438007733067820905390237206358880...
A(t) = 5 at t = 0.35111207737762337157349938790010474080253...
A(t) = 6 at t = 0.44509902476179757380223857309576063477813...
A(3/4) = 18.04139246037655138841324835985762487898724341...
A(2/3) = 11.59103511448176661974748662249737201844158309...
A(Phi) = 9.595623356758087506923478384122062088751068609...
A(1/2) = 6.800139835051923542641455169580774467247971025...
A(1/3) = 4.847274134844057155467506697748724715389597193...
A(1/4) = 4.236976626306045459467696438142250301516563681...
A(1/5) = 3.934732308501055907377639201049737298238369356...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[Product[x^j + x^(k - j), {j, 0, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 08 2024 *)
    nmax = 100; CoefficientList[Series[-1 + 2*Sum[x^(k^2) * Product[1 + x^(2*j), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}] + Sum[x^((k-1)*k) * Product[1 + x^(2*j-1), {j, 1, k}]^2, {k, 0, Sqrt[nmax] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 27 2024 *)
  • PARI
    {a(n) = my(A = sum(m=0,n+1, prod(k=0,m, x^k + x^(m-k)) +x*O(x^n) )); polcoeff(A,n)}
    for(n=0,70, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} Product_{k=0..n} (x^k + x^(n-k)).
(2) A(x) = Sum_{n>=0} x^(n*(n+1)) * Product_{k=0..n} (1/x^k + 1/x^(n-k)).
(3) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * Product_{k=0..n} (1 + x^(n-2*k)).
From Vaclav Kotesovec, Sep 29 2024: (Start)
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = A376621 = 2.7510850908889199... and c = sqrt((1 + ((197 - sqrt(27/31)) / 62)^(1/3) + ((197 + sqrt(27/31)) / 62)^(1/3))/3) = 1.146046709280363...
a(n) ~ 4*A376542(n). (End)