A369559 T(n,k) is the sum of the permanents of all k X k submatrices in the n X n Pascal matrix; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 1, 3, 1, 1, 7, 9, 1, 1, 15, 50, 35, 1, 1, 31, 234, 482, 185, 1, 1, 63, 1016, 5011, 6894, 1267, 1, 1, 127, 4256, 46252, 162724, 150624, 10633, 1, 1, 255, 17509, 403316, 3231672, 8369812, 4900141, 105219, 1, 1, 511, 71349, 3415771, 59157822, 362855438, 696003275, 223813933, 1196889, 1
Offset: 0
Examples
T(3,2) = 9: The 3 X 3 Pascal matrix [1 0 0] [1 1 0] [1 2 1] has nine 2 X 2 submatrices [1 0] [1 0] [0 0] [1 0] [1 0] [0 0] [1 1] [1 0] [1 0] [1 1] [1 0] [1 0] [1 2] [1 1] [2 1] [1 2] [1 1] [2 1]. Sum of their permanents is 1 + 0 + 0 + 2 + 1 + 0 + 3 + 1 + 1 = 9. Triangle T(n,k) begins: 1; 1, 1; 1, 3, 1; 1, 7, 9, 1; 1, 15, 50, 35, 1; 1, 31, 234, 482, 185, 1; 1, 63, 1016, 5011, 6894, 1267, 1; 1, 127, 4256, 46252, 162724, 150624, 10633, 1; 1, 255, 17509, 403316, 3231672, 8369812, 4900141, 105219, 1; ...
Links
- Wikipedia, Permanent (mathematics)
Crossrefs
Programs
-
Maple
with(combinat): with(LinearAlgebra): T:= proc(n, k) option remember; `if`(k=0 or k=n, 1, (l-> add(add( Permanent(SubMatrix(Matrix(n, (i, j)-> binomial(i-1, j-1)), i, j)), j in l), i in l))(choose([$1..n], k))) end: seq(seq(T(n, k), k=0..n), n=0..9);
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0 || k == n, 1, Module[{l, M}, l = Subsets[Range[n], {k}]; M = Table[Binomial[i-1, j-1], {i, n}, {j, n}]; Total[Permanent /@ Flatten[Table[M[[i, j]], {i, l}, {j, l}], 1]]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 29 2024 *)