cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369559 T(n,k) is the sum of the permanents of all k X k submatrices in the n X n Pascal matrix; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 9, 1, 1, 15, 50, 35, 1, 1, 31, 234, 482, 185, 1, 1, 63, 1016, 5011, 6894, 1267, 1, 1, 127, 4256, 46252, 162724, 150624, 10633, 1, 1, 255, 17509, 403316, 3231672, 8369812, 4900141, 105219, 1, 1, 511, 71349, 3415771, 59157822, 362855438, 696003275, 223813933, 1196889, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 25 2024

Keywords

Examples

			T(3,2) = 9:
  The 3 X 3 Pascal matrix
    [1 0 0]
    [1 1 0]
    [1 2 1]
  has nine 2 X 2 submatrices
    [1 0] [1 0] [0 0] [1 0] [1 0] [0 0] [1 1] [1 0] [1 0]
    [1 1] [1 0] [1 0] [1 2] [1 1] [2 1] [1 2] [1 1] [2 1].
  Sum of their permanents is 1 + 0 + 0 + 2 + 1 + 0 + 3 + 1 + 1 = 9.
Triangle T(n,k) begins:
  1;
  1,   1;
  1,   3,     1;
  1,   7,     9,      1;
  1,  15,    50,     35,       1;
  1,  31,   234,    482,     185,       1;
  1,  63,  1016,   5011,    6894,    1267,       1;
  1, 127,  4256,  46252,  162724,  150624,   10633,      1;
  1, 255, 17509, 403316, 3231672, 8369812, 4900141, 105219, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000012, A000225, A369906.
Cf. A007318, A184173 (same for determinants).

Programs

  • Maple
    with(combinat): with(LinearAlgebra):
    T:= proc(n, k) option remember; `if`(k=0 or k=n, 1, (l-> add(add(
          Permanent(SubMatrix(Matrix(n, (i, j)-> binomial(i-1, j-1)),
           i, j)), j in l), i in l))(choose([$1..n], k)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..9);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0 || k == n, 1, Module[{l, M},
        l = Subsets[Range[n], {k}];
        M = Table[Binomial[i-1, j-1], {i, n}, {j, n}];
        Total[Permanent /@ Flatten[Table[M[[i, j]], {i, l}, {j, l}], 1]]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 29 2024 *)