A369585 Table read by rows. T(n, k) = [z^k] h(n, 1, z) where h(n, v, z) are the modified Lommel polynomials (A369117).
1, 0, 2, -1, 0, 8, 0, -8, 0, 48, 1, 0, -72, 0, 384, 0, 18, 0, -768, 0, 3840, -1, 0, 288, 0, -9600, 0, 46080, 0, -32, 0, 4800, 0, -138240, 0, 645120, 1, 0, -800, 0, 86400, 0, -2257920, 0, 10321920, 0, 50, 0, -19200, 0, 1693440, 0, -41287680, 0, 185794560
Offset: 0
Examples
The list of coefficients starts: [0] 1 [1] 0, 2 [2] -1, 0, 8 [3] 0, -8, 0, 48 [4] 1, 0, -72, 0, 384 [5] 0, 18, 0, -768, 0, 3840 [6] -1, 0, 288, 0, -9600, 0, 46080 [7] 0, -32, 0, 4800, 0, -138240, 0, 645120 [8] 1, 0, -800, 0, 86400, 0, -2257920, 0, 10321920
Links
- David Dickinson, On Lommel and Bessel polynomials, Proc. AMS 5 (1954) 946-956.
- Eric Weisstein's World of Mathematics, Lommel Polynomial.
Crossrefs
Programs
-
Maple
p := proc(n, x) option remember; if n = -1 then 0 elif n = 0 then 1 else 2*n*z*p(n - 1, z) - p(n - 2, z) fi end: seq(seq(coeff(p(n, z), z, k), k = 0..n), n = 0..9);
-
Mathematica
Table[CoefficientList[Expand[ResourceFunction["LommelR"][n, 1, 1/z]], z], {n, 0, 8}] // MatrixForm
Formula
T(n, k) = [z^k] 2*n*z*p(n-1, z) - p(n-2, z) where p(-1, z) = 0 and p(0, z) = 1.
T(n, k) = (-1)^k * [z^k] h(n, -n, z) where h(n, v, z) are the modified Lommel polynomials (A369117).