A369596 Number T(n,k) of permutations of [n] whose fixed points sum to k; triangle T(n,k), n>=0, 0<=k<=A000217(n), read by rows.
1, 0, 1, 1, 0, 0, 1, 2, 1, 1, 1, 0, 0, 1, 9, 2, 2, 3, 3, 2, 1, 1, 0, 0, 1, 44, 9, 9, 11, 11, 13, 5, 5, 4, 4, 2, 1, 1, 0, 0, 1, 265, 44, 44, 53, 53, 62, 64, 29, 22, 24, 16, 16, 8, 6, 5, 4, 2, 1, 1, 0, 0, 1, 1854, 265, 265, 309, 309, 353, 362, 406, 150, 159, 126, 126, 93, 86, 44, 36, 29, 19, 19, 9, 7, 5, 4, 2, 1, 1, 0, 0, 1
Offset: 0
Examples
T(3,0) = 2: 231, 312. T(3,1) = 1: 132. T(3,2) = 1: 321. T(3,3) = 1: 213. T(3,6) = 1: 123. T(4,0) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321. Triangle T(n,k) begins: 1; 0, 1; 1, 0, 0, 1; 2, 1, 1, 1, 0, 0, 1; 9, 2, 2, 3, 3, 2, 1, 1, 0, 0, 1; 44, 9, 9, 11, 11, 13, 5, 5, 4, 4, 2, 1, 1, 0, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(s) option remember; (n-> `if`(n=0, 1, add(expand( `if`(j=n, x^j, 1)*b(s minus {j})), j=s)))(nops(s)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n})): seq(T(n), n=0..7); # second Maple program: g:= proc(n) option remember; `if`(n=0, 1, n*g(n-1)+(-1)^n) end: b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, g(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1))) end: T:= (n, k)-> b(k, min(n, k), n): seq(seq(T(n, k), k=0..n*(n+1)/2), n=0..7);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, n*g[n - 1] + (-1)^n]; b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0, If[n == 0, g[m], b[n, i-1, m] + b[n-i, Min[n-i, i-1], m-1]]]; T[n_, k_] := b[k, Min[n, k], n]; Table[Table[T[n, k], {k, 0, n*(n + 1)/2}], {n, 0, 7}] // Flatten (* Jean-François Alcover, May 24 2024, after Alois P. Heinz *)