cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369621 Expansion of (1/x) * Series_Reversion( x / (1/(1-x) + x^3) ).

Original entry on oeis.org

1, 1, 2, 6, 18, 57, 191, 660, 2334, 8417, 30831, 114380, 428915, 1623143, 6190876, 23774613, 91849846, 356735941, 1392091107, 5455425618, 21460947111, 84717452192, 335479515201, 1332327233554, 5305235886691, 21176621863427, 84720103674498
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)+x^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(2*n-4*k, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(2*n-4*k,n-3*k).

A369622 Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^2 + x^3) ).

Original entry on oeis.org

1, 2, 7, 31, 151, 783, 4243, 23740, 136099, 795321, 4719980, 28370532, 172357487, 1056658346, 6528779587, 40614467912, 254167595939, 1599012530917, 10107091256418, 64155246033712, 408780285886008, 2613634555525584, 16763436345211527, 107827070566159112
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^2+x^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(3*n-5*k+1, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(3*n-5*k+1,n-3*k).
Showing 1-2 of 2 results.