cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369631 Expansion of (1/x) * Series_Reversion( x * (1/(1+x^4) - x) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 49, 168, 594, 2149, 7920, 29640, 112359, 430564, 1665197, 6491280, 25478886, 100611695, 399421439, 1593221090, 6382176160, 25664184349, 103560846454, 419215870860, 1701907025715, 6927658961599, 28268225980197, 115608889788304
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1+x^4)-x))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*n-4*k+1, k)*binomial(2*n-4*k, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(2*n-4*k+1,k) * binomial(2*n-4*k,n-4*k).

A370840 Expansion of (1/x) * Series_Reversion( x * (1/(1-x^3) - x) ).

Original entry on oeis.org

1, 1, 2, 4, 8, 14, 15, -30, -297, -1442, -5693, -20046, -64765, -192911, -522954, -1236717, -2221422, -848673, 18142403, 122417208, 573446212, 2287694033, 8211900486, 26984131280, 81027339912, 217474121511, 487508197964, 690838844798, -1034716617740
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1-x^3)-x))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-3*k+1, k)*binomial(2*n-3*k, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-3*k+1,k) * binomial(2*n-3*k,n-3*k).
Showing 1-2 of 2 results.