A370034
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 4*A(x))^n = 1 - 2*Sum_{n>=1} x^(n^2).
Original entry on oeis.org
1, 4, 15, 53, 185, 711, 3270, 17297, 95108, 511258, 2653139, 13479835, 68633758, 356913516, 1906525759, 10388550830, 57084621325, 313692565172, 1719365476703, 9416232699651, 51699722653269, 285294478988749, 1583233662850172, 8826549215612727, 49354550054780111, 276444281747417079
Offset: 1
G.f.: A(x) = x + 4*x^2 + 15*x^3 + 53*x^4 + 185*x^5 + 711*x^6 + 3270*x^7 + 17297*x^8 + 95108*x^9 + 511258*x^10 + 2653139*x^11 + 13479835*x^12 + ...
where
Sum_{n=-oo..+oo} (x^n - 4*A(x))^n = 1 - 2*x - 2*x^4 - 2*x^9 - 2*x^16 - 2*x^25 - 2*x^36 - 2*x^49 - ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05211271680112049721451382589099198923178830298930738503...
then Sum_{n=-oo..+oo} (exp(-n*Pi) - 4*A)^n = 2 - Pi^(1/4)/gamma(3/4) = 0.913565188786691985...
(V.2) Let A = A(exp(-2*Pi)) = 0.001881490436109324727231096204943046774873234177072692211...
then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 4*A)^n = 2 - sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) = 0.99626511451226...
(V.3) Let A = A(-exp(-Pi)) = -0.03679381086518350821622244996144281973183248006035375080...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 4*A)^n = 2 - (Pi/2)^(1/4)/gamma(3/4) = 1.08642086184388317...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001853590408074327278987912837104527635895010708605840824...
then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 4*A)^n = 2 - 2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) = 1.003734885439...
Cf.
A370041,
A370030,
A370031,
A355868,
A370033,
A370035,
A370036,
A370037,
A370038,
A370039,
A370043.
-
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 4*Ser(A))^m ) - 1 + 2*sum(m=1,#A, x^(m^2) ), #A-1)/4 ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A369672
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n - 4*A(x))^n = theta_3(x).
Original entry on oeis.org
1, -4, 19, -100, 569, -3416, 21302, -136636, 895572, -5971096, 40366463, -276036720, 1905940182, -13269019988, 93040431283, -656472509864, 4657492107245, -33205607204468, 237777067846451, -1709374453370956, 12332468208675821, -89262196983781332, 647988910138661556
Offset: 1
G.f.: A(x) = x - 4*x^2 + 19*x^3 - 100*x^4 + 569*x^5 - 3416*x^6 + 21302*x^7 - 136636*x^8 + 895572*x^9 - 5971096*x^10 + 40366463*x^11 - 276036720*x^12 + ...
where Sum_{n=-oo..+oo} (-1)^n * (x^n - 4*A(x))^n = theta_3(x), and
theta_3(x) = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + ... + x^(n^2) + ...
RELATED SERIES.
When we break up the doubly infinite sum into the following parts
P = Sum_{n>=0} (-1)^n * (x^n - 4*A(x))^n = 1 + 3*x + 4*x^3 - 15*x^4 + 92*x^5 - 528*x^6 + 3196*x^7 - 20032*x^8 + 128819*x^9 - 845312*x^10 + 5638568*x^11 - 38122176*x^12 + ...
N = Sum_{n>=1} (-1)^n * x^(n^2) / (1 - 4*x^n*A(x))^n = -x - 4*x^3 + 17*x^4 - 92*x^5 + 528*x^6 - 3196*x^7 + 20032*x^8 - 128817*x^9 + 845312*x^10 - 5638568*x^11 + 38122176*x^12 + ...
we see that the sum equals P + N = theta_3(x).
SPECIAL VALUES.
(V.1) A(exp(-Pi)) = 0.036996905719511834010608252452763733693844226179196126014832...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) - 4*A(exp(-Pi)))^n = Pi^(1/4)/gamma(3/4) = 1.0864348112133080...
(V.2) A(exp(-2*Pi)) = 0.0018536158947374219405603135305712038712234615914707006019...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) - 4*A(exp(-2*Pi)))^n = Pi^(1/4)/gamma(3/4) * sqrt(2 + sqrt(2))/2 = 1.0037348854877390...
(V.3) A(exp(-3*Pi)) = 0.0000806734779029429093753810781078431328279003228392603227...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-3*n*Pi) - 4*A(exp(-3*Pi)))^n = Pi^(1/4)/gamma(3/4) * sqrt(1 + sqrt(3))/(108)^(1/8) = 1.000161399035140...
(V.4) A(exp(-4*Pi)) = 0.0000034872937107879617892620501277220047637185282553554945...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-4*n*Pi) - 4*A(exp(-4*Pi)))^n = Pi^(1/4)/gamma(3/4) * (2 + 8^(1/4))/4 = 1.000161399035140...
(V.5) A(exp(-5*Pi)) = 0.0000001507016366950287572418174619564191722052174968450159...
where Sum_{n=-oo..+oo} (-1)^n * (exp(-5*n*Pi) - 4*A(exp(-5*Pi)))^n = Pi^(1/4)/gamma(3/4) * sqrt((2 + sqrt(5))/5) = 1.0000003014034550...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); M=sqrtint(#A+4);
A[#A] = polcoeff( (sum(n=-M,M, x^(n^2)) - sum(n=-#A,#A, (-1)^n * (x^n - 4*x*Ser(A))^n) )/4, #A); ); A[n]}
for(n=1,30,print1(a(n),", "))
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); M=sqrtint(#A+4);
A[#A] = polcoeff( (sum(n=-M,M, x^(n^2)) - sum(n=-#A,#A, (-1)^n * x^(n^2)/(1 - 4*x^(n+1)*Ser(A))^n) )/4, #A); ); A[n]}
for(n=1,30,print1(a(n),", "))
A369684
Expansion of g.f. A(x) satisfying Sum_{n>=0} x^n * Product_{k=0..n} (x^(2*k+1) + A(x)) = theta_4(x).
Original entry on oeis.org
1, -4, 6, -14, 27, -54, 110, -217, 445, -905, 1863, -3858, 7986, -16599, 34438, -71445, 148075, -306551, 634469, -1312707, 2716636, -5624353, 11649994, -24144393, 50059148, -103820127, 215351391, -446713118, 926604822, -1921881919, 3985904949, -8266207127, 17142752984
Offset: 0
G.f.: A(x) = 1 - 4*x + 6*x^2 - 14*x^3 + 27*x^4 - 54*x^5 + 110*x^6 - 217*x^7 + 445*x^8 - 905*x^9 + 1863*x^10 - 3858*x^11 + 7986*x^12 + ...
By definition, A = A(x) satisfies the sum of products
theta_4(x) = (x + A) + x*(x + A)*(x^3 + A) + x^2*(x + A)*(x^3 + A)*(x^5 + A) + x^3*(x + A)*(x^3 + A)*(x^5 + A)*(x^7 + A) + x^4*(x + A)*(x^3 + A)*(x^5 + A)*(x^7 + A)*(x^9 + A) + ...
also, A = A(x) satisfies another sum of products
1 + x*theta_4(x) = 1/(1 - x*A) + x^2/((1 - x*A)*(1 - x^3*A)) + x^6/((1 - x*A)*(1 - x^3*A)*(1 - x^5*A)) + x^12/((1 - x*A)*(1 - x^3*A)*(1 - x^5*A)*(1 - x^7*A)) + x^20/((1 - x*A)*(1 - x^3*A)*(1 - x^5*A)*(1 - x^7*A)*(1 - x^9*A)) + ...
Further, A = A(x) satisfies the continued fraction given by
theta_4(x) = (x + A)/(1 - x*(x^3 + A)/(1 + x*(x^3 + A) - x*(x^5 + A)/(1 + x*(x^5 + A) - x*(x^7 + A)/(1 + x*(x^7 + A) - x*(x^9 + A)/(1 + x*(x^9 + A) - x*(x^11 + A)/(1 + ...))))))
where theta_4(x) = 1 - 2*x + 2*x^4 - 2*x^9 + 2*x^16 - 2*x^25 + 2*x^36 -+ ... + (-1)^n*2*x^(n^2) + ...
SPECIAL VALUES.
(V.1) A(exp(-Pi)) = 0.83730587071032100304130860721328123647753330074821532779...
where Sum_{n>=0} exp(-n*Pi) * Product_{k=0..n} (exp(-(2*k+1)*Pi) + A(exp(-Pi))) = (Pi/2)^(1/4)/gamma(3/4) = 0.91357913815611682140...
(V.2) A(exp(-2*Pi)) = 0.992551062280675678319013190897648447080249317782864483...
where Sum_{n>=0} exp(-2*n*Pi) * Product_{k=0..n} (exp(-2*(2*k+1)*Pi) + A(exp(-2*Pi))) = (Pi/2)^(1/4)/gamma(3/4) * 2^(1/8) = 0.99626511456090713578995...
(V.3) A(exp(-4*Pi)) = 0.99998605070354391051731649267915065106164831758249400...
where Sum_{n=-oo..+oo} exp(-4*n*Pi) * Product_{k=0..n} (exp(-4*(2*k+1)*Pi) + A(exp(-4*Pi))) = Pi^(1/4)/gamma(3/4) * (sqrt(2) + 1)^(1/4)/2^(7/16) = 0.99999302531528758200931...
(V.4) A(exp(-10*Pi)) = 0.9999999999999091559572670393411928665159764707765156...
where Sum_{n=-oo..+oo} exp(-10*n*Pi) * Product_{k=0..n} (exp(-10*(2*k+1)*Pi) + A(exp(-10*Pi))) = Pi^(1/4)/gamma(3/4) * 2^(7/8)/((5^(1/4) - 1)*sqrt(5*sqrt(5) + 5)) = 0.99999999999995457797863...
-
{a(n) = my(A=[1], M = sqrtint(2*n)+1); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( sum(n=-M,M, (-1)^n * x^(n^2) ) - sum(n=0,#A, x^n * prod(k=0,n, x^(2*k+1) + Ser(A)) ), #A-1) ); H=A; A[n+1]}
for(n=0,40, print1(a(n),", "))
Showing 1-3 of 3 results.
Comments