A369717 The sum of divisors of the smallest powerful number that is a multiple of n.
1, 7, 13, 7, 31, 91, 57, 15, 13, 217, 133, 91, 183, 399, 403, 31, 307, 91, 381, 217, 741, 931, 553, 195, 31, 1281, 40, 399, 871, 2821, 993, 63, 1729, 2149, 1767, 91, 1407, 2667, 2379, 465, 1723, 5187, 1893, 931, 403, 3871, 2257, 403, 57, 217, 3991, 1281, 2863
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e == 1, p^2 + p + 1, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i,2] == 1, f[i,2] = 2)); sigma(f);}
Formula
Multiplicative with a(p) = p^2 + p + 1 and a(p^e) = (p^(e+1)-1)/(p-1) for e >= 2.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-3) - 1/p^(2*s-2) + 1/p^(3*s-3)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^5 + 1/p^6 - 1/p^7) = 1.01304866467771286896... .