A369721 The sum of unitary divisors of the smallest cubefull number that is a multiple of n.
1, 9, 28, 9, 126, 252, 344, 9, 28, 1134, 1332, 252, 2198, 3096, 3528, 17, 4914, 252, 6860, 1134, 9632, 11988, 12168, 252, 126, 19782, 28, 3096, 24390, 31752, 29792, 33, 37296, 44226, 43344, 252, 50654, 61740, 61544, 1134, 68922, 86688, 79508, 11988, 3528, 109512
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e <= 2, p^3 + 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= 2, 1 + f[i,1]^3, 1 + f[i,1]^f[i,2]));}
Formula
Multiplicative with a(p) = p^3 + 1 for e <= 2, and a(p^e) = p^e + 1 for e >= 3.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-3) - 1/p^(s-1) - 1/p^(2*s-4) + 1/p^(4*s-4) - 1/p^(4*s-3) ).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(3) * zeta(4) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^5 + 1/p^12 - 2/p^13 + 1/p^14) = 0.65803546696642353777... .