cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369763 Decimal expansion of the asymptotic mean of the ratio A000688(k)/A038538(k).

Original entry on oeis.org

9, 8, 7, 7, 1, 4, 8, 4, 0, 0, 4, 4, 9, 3, 7, 6, 3, 7, 7, 4, 0, 2, 3, 0, 6, 8, 6, 7, 0, 6, 3, 9, 3, 4, 9, 3, 5, 1, 9, 0, 1, 0, 7, 5, 6, 7, 0, 3, 9, 5, 6, 2, 7, 1, 4, 4, 9, 9, 3, 6, 6, 1, 2, 5, 1, 9, 0, 8, 1, 8, 5, 0, 7, 8, 1, 8, 2, 9, 8, 6, 5, 2, 6, 6, 0, 0, 7, 6, 4, 7, 5, 2, 3, 9, 4, 3, 1, 0, 4, 3, 6, 5, 9, 3, 6
Offset: 0

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Comments

The asymptotic mean of the ratio between the number of non-isomorphic abelian groups and the number of non-isomorphic semisimple rings of the same order.
The constant A in Kühleitner's paper (1995).
The ratio is 1 for all biquadratefree numbers (whose asymptotic density is A215267 = 0.923..., see A046100), and smaller than 1 otherwise.

Examples

			0.98771484004493763774023068670639349351901075670395...
		

Crossrefs

Programs

  • PARI
    default(realprecision, 120); my(N=512, x='x+O('x^N), v); v = Vec(1/prod(k=1, sqrtint(N)+1, prod(j=1, 1+N\k^2, 1-x^(j*k^2)))); prodeulerrat((1-1/p)*vecsum(vector(N, i, numbpart(i-1)/(v[i]*p^(i-1))))) \\ after Vaclav Kotesovec at A004101

Formula

Equals Product_{p prime} (1 - 1/p)*(1 + Sum_{k>=1} A000041(k)/(A004101(k)*p^k)).