A369780 a(n) = number of subsets of {1,2,...,n} that contain more primes than nonprimes.
0, 0, 1, 4, 5, 16, 22, 64, 93, 130, 176, 562, 794, 2380, 3473, 4944, 6885, 21778, 31180, 94184, 137980, 198440, 280600, 880970, 1271626, 1807781, 2533987, 3505699, 4791323, 16489546, 22964087, 75973189, 107594213, 150676186, 208791332, 286454524, 389329652
Offset: 0
Keywords
Examples
a(4) = 5 enumerates these subsets: {2}, {3}, {2,3}, {1,2,3}, {2,3,4}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, `if`(t>0, 1, 0), b(n-1, t)+b(n-1, t+`if`(isprime(n), 1, -1))) end: a:= n-> b(n, 0): seq(a(n), n=0..36); # Alois P. Heinz, Feb 03 2024
-
Mathematica
Map[Length[Select[Map[Commonest, PrimeQ[Rest[Subsets[Range[#]]]]], # == {True} &]] &, Range[22]] (* Peter J. C. Moses, Jan 29 2024 *)
Formula
a(n) + A369781(n) = 2^n-1.
a(n) = Sum_{i=1..pi(n)} Sum_{j=0..i-1} binomial(pi(n),i)*binomial(n-pi(n),j). - Alois P. Heinz, Feb 03 2024
Extensions
a(23)-a(36) from Alois P. Heinz, Feb 03 2024