cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A369687 a(n) = Sum_{p|n, p prime} p^phi(n/p).

Original entry on oeis.org

0, 2, 3, 2, 5, 7, 7, 4, 9, 21, 11, 13, 13, 71, 106, 16, 17, 73, 19, 41, 778, 1035, 23, 97, 625, 4109, 729, 113, 29, 362, 31, 256, 59170, 65553, 18026, 145, 37, 262163, 531610, 881, 41, 4874, 43, 1145, 22186, 4194327, 47, 6817, 117649, 1049201, 43047010, 4265, 53, 262873, 9780266, 6497
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^EulerPhi[n/#] &, PrimeQ[#] &], {n, 60}]
  • Python
    from sympy import totient, primefactors
    def A369687(n): return sum(p**totient(n//p) for p in primefactors(n)) # Chai Wah Wu, Jan 28 2024

Formula

a(p^k) = p^((p-1)*p^(k-2)+floor(1/k)/p) for p prime and k>=1. - Wesley Ivan Hurt, Jul 16 2025
Showing 1-1 of 1 results.