cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369795 Binomial transform of A355408.

Original entry on oeis.org

1, 3, 21, 225, 3201, 56913, 1214361, 30229545, 860016801, 27525472353, 978858962601, 38291126920665, 1634047719138801, 75542860973042193, 3761030066169432441, 200624240375801784585, 11415336789685550907201, 690117422445926970890433, 44175435307592982599575881
Offset: 0

Views

Author

Prabha Sivaramannair, Feb 01 2024

Keywords

Crossrefs

Cf. A355408.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^x/(1 + E^x - E^(3*x)), {x, 0, nmax}], x]*
    Range[0, nmax]! (* Vaclav Kotesovec, Feb 01 2024*)
  • SageMath
    def a(m):
        if m==0:
            return 1
        else:
            return 1+sum([(3^j-1)*binomial(m,j)*a(m-j) for j in [1,..,m]])
    list(a(m) for m in [1,..,50])

Formula

a(n) = 1 + Sum_{k=1..n} (3^k - 1) * binomial(n,k) * a(n-k) for n > 0.
E.g.f.: exp(x)/(1 + exp(x) - exp(3*x)). - Vaclav Kotesovec, Feb 01 2024