A369795 Binomial transform of A355408.
1, 3, 21, 225, 3201, 56913, 1214361, 30229545, 860016801, 27525472353, 978858962601, 38291126920665, 1634047719138801, 75542860973042193, 3761030066169432441, 200624240375801784585, 11415336789685550907201, 690117422445926970890433, 44175435307592982599575881
Offset: 0
Keywords
Crossrefs
Cf. A355408.
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[E^x/(1 + E^x - E^(3*x)), {x, 0, nmax}], x]* Range[0, nmax]! (* Vaclav Kotesovec, Feb 01 2024*)
-
SageMath
def a(m): if m==0: return 1 else: return 1+sum([(3^j-1)*binomial(m,j)*a(m-j) for j in [1,..,m]]) list(a(m) for m in [1,..,50])
Formula
a(n) = 1 + Sum_{k=1..n} (3^k - 1) * binomial(n,k) * a(n-k) for n > 0.
E.g.f.: exp(x)/(1 + exp(x) - exp(3*x)). - Vaclav Kotesovec, Feb 01 2024