A369776 Triangular array read by rows. T(n,k) is the number of inequivalent (as defined below) transitive binary relations R on [n] such that |domain(R intersect R^(-1))| = k, n>=0, 0<=k<=n.
1, 1, 1, 3, 2, 4, 19, 9, 12, 29, 219, 76, 72, 116, 355, 4231, 1095, 760, 870, 1775, 6942, 130023, 25386, 13140, 11020, 15975, 41652, 209527, 6129859, 910161, 355404, 222285, 236075, 437346, 1466689, 9535241, 431723379, 49038872, 14562576, 6871144, 5442150, 7386288, 17600268, 76281928, 642779354
Offset: 0
Examples
Triangle begins 1; 1, 1; 3, 2, 4; 19, 9, 12, 29; 219, 76, 72, 116, 355; 4231, 1095, 760, 870, 1775, 6942; ...
Links
- E. Norris, The structure of an idempotent relation, Semigroup Forum, Vol 18 (1979), 319-329.
Crossrefs
Programs
-
Mathematica
nn = 8; posets = Select[Import["https://oeis.org/A001035/b001035.txt", "Table"], Length@# == 2 &][[All, 2]];p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]]; Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[Series[ p[Exp[ y x] - 1]*p[ x], {x, 0, nn}], {x, y}]] // Grid
Formula
E.g.f.: p(exp(y*x) - 1)*p(x) where p(x) is the e.g.f. for A001035.
Comments