A369819 The seventh term of the greedy B_n set of natural numbers.
6, 30, 124, 368, 926, 2214, 4181, 8043, 13818, 23614, 34825, 54011, 84026, 109870, 156474, 217790, 304910, 376260, 510220, 667130, 794873, 1008048, 1302947, 1629264, 1916949, 2361150, 2859694, 3467661, 3989744, 4779270, 5479857, 6449983, 7575912
Offset: 1
Examples
a(2) = 30, as all 28 nonincreasing sums from {0,1,3,7,12,20,30}, namely 0+0 < 0+1 < 1+1 < ... < 7+20 < 0+30 < 1+30 < 12+20 <3+30 < 7+30 < 20+20 < 12+30 < 20+30 < 30+30, are distinct, and all other 7-element sets of nonnegative integers with this property are lexicographically after {0,1,3,7,12,20,30}.
Links
- M. B. Nathanson, The third positive element in the greedy B_h-set, arXiv:2310.14426 [math.NT], 2023.
- M. B. Nathanson and Kevin O'Bryant, The fourth positive element in the greedy B_h-set, arXiv:2311.14021 [math.NT], 2023.
- Kevin O'Bryant, B_h-sets and Rigidity, arXiv:2312.10910 [math.NT], 2023.
Crossrefs
Column 7 of A365515.
Programs
-
Python
# uses Python code from A369818 from itertools import count, combinations_with_replacement def A369819(n): alist = [0,1,n+1,n*(n+1)+1,(n+3>>1)*n**2+(3*n+2>>1),A369818(n)] aset = set(sum(d) for d in combinations_with_replacement(alist,n)) blist = [] for i in range(n): blist.append(set(sum(d) for d in combinations_with_replacement(alist,i))) for k in count(alist[-1]+1): for i in range(n): if any((n-i)*k+d in aset for d in blist[i]): break else: return k # Chai Wah Wu, Feb 28 2024
Comments