A369841 n-th digit of the decimal expansion of 1/n, with the digit to the left of the decimal point counted as the first digit.
1, 5, 3, 0, 0, 6, 7, 0, 1, 0, 9, 3, 3, 5, 6, 0, 7, 5, 1, 0, 4, 5, 3, 6, 0, 5, 3, 5, 1, 3, 9, 0, 3, 5, 5, 7, 7, 5, 2, 0, 9, 0, 3, 2, 2, 5, 7, 3, 8, 0, 1, 9, 3, 1, 1, 1, 1, 5, 1, 6, 9, 5, 1, 0, 3, 5, 7, 4, 1, 4, 9, 8, 3, 5, 3, 3, 9, 2, 1, 0, 7, 5, 3, 0, 7, 5, 1, 6, 1, 1, 9, 0, 1, 5, 5, 6, 7, 6, 1, 0
Offset: 1
Examples
a(2) = 5 since 1/2 = 0.5 and the 2nd digit of "0.5" (including the 0) is 5. a(7) = 7 since 1/7 = 0.142857142857... and its 7th digit is 7. From _Jon E. Schoenfield_, Feb 03 2024: (Start) In each row of the following table, the n-th digit is surrounded by spaces: . n 1/n a(n) -- ----------------- ---- 1 1 .0000000000... 1 2 0. 5 000000000... 5 3 0.3 3 33333333... 3 4 0.25 0 0000000... 0 5 0.200 0 000000... 0 6 0.1666 6 66666... 6 7 0.14284 7 1428... 7 8 0.125000 0 000... 0 9 0.1111111 1 11... 1 10 0.10000000 0 0... 0 (End)
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A061480.
Programs
-
Mathematica
Table[Mod[Floor[10^(n-1)/n],10],{n,100}] (* James C. McMahon, Feb 04 2024 *)
-
Python
def a(n): return (10**(n-1)//n)%10 print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Feb 03 2024
Formula
a(n) = floor((10^(n-1))/n) mod 10.
Comments