A369843 Number of compositions of 5*n-3 into parts 2 and 5.
1, 2, 4, 11, 34, 102, 296, 851, 2452, 7085, 20489, 59241, 171245, 494973, 1430710, 4135527, 11953991, 34553692, 99879234, 288705927, 834519021, 2412219633, 6972643768, 20154781952, 58258423000, 168398935968, 486765693153, 1407021006061, 4067065818560
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-9,10,-5,1).
Programs
-
Mathematica
LinearRecurrence[{5, -9, 10, -5, 1}, {1, 2, 4, 11, 34}, 50] (* Paolo Xausa, Mar 15 2024 *)
-
PARI
a(n) = sum(k=0, n\2, binomial(n+3*k, n-1-2*k));
Formula
a(n) = A001687(5*n-2).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+3*k,n-1-2*k).
a(n) = 5*a(n-1) - 9*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1-x)^3/((1-x)^5 - x^2).