A369854 a(n) = number of nonempty subsets S of {1,2,...,n} such that (number of nonprimes in S) = (number of primes in S).
0, 0, 1, 2, 5, 9, 19, 34, 69, 125, 209, 461, 791, 1715, 3002, 5004, 8007, 19447, 31823, 75581, 125969, 203489, 319769, 817189, 1307503, 2042974, 3124549, 4686824, 6906899, 20030009, 30045014, 84672314, 129024479, 193536719, 286097759, 417225899, 600805295
Offset: 0
Keywords
Examples
a(5) = 9 counts these subsets: {1,2}, {1,3}, {1,5}, {2,4}, {3,4}, {4,5}, {1,2,3,4}, {1,2,4,5}, {1,3,4,5}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Programs
-
Maple
a:= n-> binomial(n, numtheory[pi](n))-1: seq(a(n), n=0..36); # Alois P. Heinz, Feb 03 2024
-
Mathematica
Map[Length[Select[Map[Commonest, PrimeQ[Rest[Subsets[Range[#]]]]], # == {False, True} || # == {True, False} &]] &, Range[22]] (* Peter J. C. Moses, Jan 29 2024 *)
Formula
a(n) = A037031(n) - 1 = binomial(n,pi(n)) - 1. - Alois P. Heinz, Feb 03 2024
Extensions
a(23)-a(36) from Alois P. Heinz, Feb 03 2024