A369877 Prime numbers p such that the product of their prime digits is equal to the product of their nonprime digits, where p has at least one prime digit.
263, 1933, 3319, 3391, 3931, 9133, 11393, 11933, 12163, 12241, 12421, 12613, 13913, 13931, 14221, 16231, 21163, 21613, 24121, 26113, 31139, 31193, 31319, 31391, 32611, 33119, 33191, 33911, 39113, 41221, 61231, 62131, 62311, 63211, 91331, 93113, 93131, 111263
Offset: 1
Examples
12163 is a term because it is a prime number whose prime digits and nonprime digits have the same product: 2 * 3 = 1 * 1 * 6.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[11500]], Length[dp = Select[d = IntegerDigits[#], PrimeQ[#1] &]] > 0 && Times @@ dp == Times @@ Select[d, !PrimeQ[#1] &] &] (* Amiram Eldar, Mar 22 2024 *)
-
Python
from math import prod from sympy import isprime def ok(n): if not isprime(n): return False s = str(n) p, np = [d for d in s if d in "2357"], [d for d in s if d in "014689"] return p and prod(map(int, p)) == prod(map(int, np)) print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Mar 22 2024
Comments