cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369896 Positive integers k such that k = a/(b+c) + b/(a+c) + c/(a+b) for some positive integers a, b and c.

Original entry on oeis.org

4, 6, 10, 12, 14, 16, 18, 24, 28, 32, 34, 38, 42, 46, 48, 58, 60, 66, 76, 82, 92, 94, 98, 102, 112, 114, 116, 126, 130, 132, 136, 144, 146, 152, 156, 158, 160, 162, 166, 178, 182, 184, 186, 196, 198, 200, 206, 214, 218, 228, 232, 244, 258, 266, 268, 270, 276, 282, 300, 304, 310, 312, 314
Offset: 1

Views

Author

Robin Visser, Feb 04 2024

Keywords

Comments

Bremner and Macleod showed that a positive integer k is in this sequence if and only if the elliptic curve E/Q : y^2 = x^3 + (4*k^2 + 12*k - 3)*x^2 + 32*(k + 3)*x has a generator on the bounded real component of E(R).

Examples

			There are no positive integer solutions to a/(b+c) + b/(a+c) + c/(a+b) = k for k = 1, 2, or 3. The smallest positive integer solution to a/(b+c) + b/(a+c) + c/(a+b) = 4 is (a, b, c) = (4373612677928697257861252602371390152816537558161613618621437993378423467772036, 36875131794129999827197811565225474825492979968971970996283137471637224634055579, 154476802108746166441951315019919837485664325669565431700026634898253202035277999).
		

Crossrefs

Cf. A283564 (Rank 1).

Programs

  • Magma
    is_A369896 := function(k)
        E := EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0]);
        return (Min([g[1] : g in Generators(E)]) lt 0);
    end function;
    [k : k in [4..200] | is_A369896(k)];
    
  • Sage
    def is_A369896(k):
        E = EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0])
        return ((E.rank() > 0) and (min([g.xy()[0] for g in E.gens()]) < 0))
    print([k for k in range(1, 70) if is_A369896(k)])