A369896 Positive integers k such that k = a/(b+c) + b/(a+c) + c/(a+b) for some positive integers a, b and c.
4, 6, 10, 12, 14, 16, 18, 24, 28, 32, 34, 38, 42, 46, 48, 58, 60, 66, 76, 82, 92, 94, 98, 102, 112, 114, 116, 126, 130, 132, 136, 144, 146, 152, 156, 158, 160, 162, 166, 178, 182, 184, 186, 196, 198, 200, 206, 214, 218, 228, 232, 244, 258, 266, 268, 270, 276, 282, 300, 304, 310, 312, 314
Offset: 1
Keywords
Examples
There are no positive integer solutions to a/(b+c) + b/(a+c) + c/(a+b) = k for k = 1, 2, or 3. The smallest positive integer solution to a/(b+c) + b/(a+c) + c/(a+b) = 4 is (a, b, c) = (4373612677928697257861252602371390152816537558161613618621437993378423467772036, 36875131794129999827197811565225474825492979968971970996283137471637224634055579, 154476802108746166441951315019919837485664325669565431700026634898253202035277999).
Links
- Xianwen Wang, Table of n, a(n) for n = 1..149.
- Alon Amit, How do you find the positive integer solutions to ...?, Quora, Aug 07, 2017.
- Andrew Bremner and Allan Macleod, An Unusual Cubic Representation Problem, Annales Mathematicae et Informaticae, volume 43 (2014), pages 29-41.
- MathStackExchange, Find integer in the form: a/(b+c) + b/(c+a) + c/(a+b).
- H. Nakao, Rational Points on Elliptic Curves: x/(y+z)+y/(z+x)+z/(x+y)=n, 2018 (in Japanese).
Crossrefs
Cf. A283564 (Rank 1).
Programs
-
Magma
is_A369896 := function(k) E := EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0]); return (Min([g[1] : g in Generators(E)]) lt 0); end function; [k : k in [4..200] | is_A369896(k)];
-
Sage
def is_A369896(k): E = EllipticCurve([0, 4*k^2 + 12*k - 3, 0, 32*(k+3), 0]) return ((E.rank() > 0) and (min([g.xy()[0] for g in E.gens()]) < 0)) print([k for k in range(1, 70) if is_A369896(k)])
Comments