A369922 a(n) = 8*n^3 - 6*n - 1.
-1, 1, 51, 197, 487, 969, 1691, 2701, 4047, 5777, 7939, 10581, 13751, 17497, 21867, 26909, 32671, 39201, 46547, 54757, 63879, 73961, 85051, 97197, 110447, 124849, 140451, 157301, 175447, 194937, 215819, 238141, 261951, 287297, 314227, 342789, 373031, 405001
Offset: 0
Links
- Proofwiki, Trisecting the Angle by Compass and Straightedge Construction is Impossible.
- Wikipedia, Angle trisection.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A144129.
Programs
-
Mathematica
Table[8n^3-6n-1,{n,0,37}] (* James C. McMahon, Feb 05 2024 *)
Formula
a(n) = 2*A144129(n) - 1.
From Elmo R. Oliveira, Sep 04 2025: (Start)
G.f.: (-1 + 5*x + 41*x^2 + 3*x^3)/(-1+x)^4.
E.g.f.: (-1 + 2*x + 24*x^2 + 8*x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Comments