A369956 a(n) is the least integer m such that the sum of the digits of m^2 is k+n where k is the number of digits of n.
1, 101, 11, 2, 149, 32, 4, 12, 3, 8, 106, 16, 7, 103, 13, 108, 24, 17, 1019, 124, 43, 1013, 113, 67, 114, 63, 10024, 1024, 133, 83, 1067, 167, 1044, 264, 314, 10087, 1303, 313, 10093, 1183, 707, 1374, 1333, 836, 10343, 1667, 100264, 10714, 2236, 10386, 3114
Offset: 0
Examples
a(5)=32 because 32 is the least integer with 2 digits and 32^2=1024 and 1+0+2+4=2+5.
Links
- Zhining Yang, Table of n, a(n) for n = 0..152
Programs
-
Mathematica
Table[SelectFirst[Range@200000,Total[IntegerDigits[#^2]]==n+Length@IntegerDigits@#&],{n,0,50}]