A369957 Primes p such that p - 3 and p + 3 are triprimes.
47, 73, 113, 127, 151, 167, 233, 239, 241, 313, 409, 431, 433, 439, 521, 593, 599, 601, 607, 719, 727, 967, 1031, 1087, 1249, 1409, 1439, 1471, 1559, 1601, 1831, 1913, 1993, 2089, 2161, 2273, 2281, 2287, 2311, 2351, 2393, 2633, 2689, 2711, 2729, 2767, 2833, 2879, 3079, 3313, 3319, 3359, 3511
Offset: 1
Keywords
Examples
a(3) = 113 is a term because 113 is prime, and 110 = 2 * 5 * 11 and 116 = 2^2 * 29 are triprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) isprime(n) and numtheory:-bigomega(n-3) = 3 and numtheory:-bigomega(n+3) = 3 end proc: select(filter, [seq(i,i=3..20000,2)]);
-
Mathematica
s = {}; p = 5; Do[If[{3, 3} == PrimeOmega[{p - 3, p + 3}], AppendTo[s, p]]; p = NextPrime[p], {500}]; s Select[Prime[Range[500]],PrimeOmega[#-3]==PrimeOmega[#+3]==3&]
Comments