cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369960 Numbers k such that A003415(k) >= A276086(k) and gcd(k, A003415(k)) = gcd(k, A276086(k)) > 1, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.

Original entry on oeis.org

2313, 30033, 30069, 30249, 30282, 32350, 32553, 60093, 60273, 510550, 510561, 510579, 510633, 510723, 510741, 513063, 540963, 542853, 570573, 572910, 1021023, 1021062, 1021239, 1023363, 1531539, 1561563, 9699741, 9699746, 9699759, 9699903, 9699942, 9699957, 9699965, 9700150, 9700353, 9702009, 9702027, 9702049, 9702121
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2024

Keywords

Crossrefs

Intersection of A351228 and A369963.
Subsequence of the following sequences: A013929, A369958, A369959, A369962.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA369960(n) = { my(t=A003415(n), u=A276086(n), g=gcd(n,t), h=gcd(n,u)); ((t >= u) && (g==h) && (g>1)); };
    isA369960(n) = if(!n || issquarefree(n), 0, my(t=A003415(n), u=A276086(n), g=gcd(n,t), h=gcd(n,u)); ((t >= u) && (g==h)));
    
  • PARI
    A085731(n) = { my(f=factor(n)); for(i=1, #f~, if (f[i, 2] % f[i, 1], f[i, 2]--); ); factorback(f); };
    A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); };
    isA369960(n) = if(!n || issquarefree(n),0,((A085731(n) == A324198(n)) && (A003415(n) >= A276086(n))));

Formula

{k | A085731(n) > 1 and A085731(n) == A324198(n) and A083345(k) >= A351251(k)}.