cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369978 Dirichlet inverse of sequence b(n) = 1+A083345(n), where A083345(n) = n' / gcd(n,n'), and n' stands for the arithmetic derivative of n, A003415.

Original entry on oeis.org

1, -2, -2, 2, -2, 2, -2, -4, 1, 0, -2, 3, -2, -2, -1, 9, -2, 4, -2, 9, -3, -6, -2, -8, 1, -8, 2, 15, -2, 12, -2, -18, -7, -12, -5, -14, -2, -14, -9, -22, -2, 18, -2, 27, 10, -18, -2, 20, 1, 10, -13, 33, -2, -8, -9, -36, -15, -24, -2, -16, -2, -26, 14, 36, -11, 30, -2, 45, -19, 16, -2, 22, -2, -32, 12, 51, -11, 36
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2024

Keywords

Crossrefs

Cf. A003415, A083345, A369001, A369974, A369975 (parity of terms), A369976 (positions of odd terms).
Cf. A359790 and A366265 for similar sequences.

Programs

  • PARI
    A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
    memoA369978 = Map();
    A369978(n) = if(1==n,1,my(v); if(mapisdefined(memoA369978,n,&v), v, v = -sumdiv(n,d,if(dA083345(n/d))*A369978(d),0)); mapput(memoA369978,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA083345(n/d)) * a(d).