A369979 Three-dimensional array giving all products of three (not necessarily distinct) odd primes.
27, 45, 75, 125, 63, 105, 175, 147, 245, 343, 99, 165, 275, 231, 385, 539, 363, 605, 847, 1331, 117, 195, 325, 273, 455, 637, 429, 715, 1001, 1573, 507, 845, 1183, 1859, 2197, 153, 255, 425, 357, 595, 833, 561, 935, 1309, 2057, 663, 1105, 1547, 2431, 2873, 867, 1445, 2023, 3179, 3757, 4913, 171, 285, 475, 399, 665, 931
Offset: 1
Examples
Table T(x,y,z) = A065091(x) * A065091(y) * A065091(z), x >= y >= z >= 1, is read by lexicographical ordering of weakly decreasing triplets (x,y,z): (1, 1, 1) -> 3*3*3 = 27; (2, 1, 1) -> 5*3*3 = 45, (2, 2, 1) -> 5*5*3 = 75, (2, 2, 2) -> 5*5*5 = 125; (3, 1, 1) -> 7*3*3 = 63, (3, 2, 1) -> 7*5*3 = 105, (3, 2, 2) -> 7*5*5 = 175, (3, 3, 1) -> 7*7*3 = 147, (3, 3, 2) -> 7*7*5 = 245, (3, 3, 3) -> 7*7*7 = 343.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..15180
Crossrefs
Programs
-
Mathematica
Table[Prime[i]*Prime[j]*Prime[k], {i, 2, 8}, {j, 2, i}, {k, 2, j}] // Flatten (* Michael De Vlieger, Mar 09 2024 *)
-
PARI
up_to = 15180; A369979list(up_to) = { my(v = vector(up_to), i=0); for(x=1,oo, for(y=1,x, for(z=1,y, i++; if(i > up_to, return(v)); v[i] = prime(1+x)*prime(1+y)*prime(1+z)))); (v); }; v369979 = A369979list(up_to); A369979(n) = v369979[n];
Comments