A369990
Numerator of canonical iterated stribolic area Integral_{t=0..1} h_n(t) dt (of order 1).
Original entry on oeis.org
1, 1, 1, 3, 2, 161, 24941, 49675943612, 3267335346149361824147, 2507700451651989905962493021537936733790431031, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843
Offset: 0
h_2(x) = (1-x)^2, h_2^*(x) = 1 - sqrt(x) = -h_3'(x)/3, h_3(x) = 1 - 3x + 2x^(3/2), hence Integral_{t=0..1} h_2(t) dt = 1/3 and Integral_{t=0..1} h_3(t) dt = 3/10. Therefore a(2)=1 and a(3)=3.
-
from functools import cache; from sympy.abc import x
@cache
def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
@cache
def Q(n): return (q(n).diff() * q(n-1)).integrate()
@cache
def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
def numer(c): return c.numerator if c%1 else c
print([numer(kappa(n)) for n in range(15)])
A369991
Denominator of canonical iterated stribolic area Integral_{t=0..1} h_n(t) dt (of order 1).
Original entry on oeis.org
1, 2, 3, 10, 7, 572, 89148, 177918244665, 11711158115225119429452, 8990773234863161759100003096510729982749072312, 140048278006628885452600904137492554179859017924910241263151850844470542993943699969398879
Offset: 0
h_2(x) = (1-x)^2, h_2^*(x) = 1 - sqrt(x) = - h_3'(x)/3, h_3(x) = 1 - 3x + 2x^(3/2), hence Integral_{t=0..1} h_2(t) dt = 1/3 and Integral_{t=0..1} h_3(t) dt = 3/10. Therefore a(2)=3 and a(3)=10.
-
from functools import cache; from sympy.abc import x
@cache
def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
@cache
def Q(n): return (q(n).diff() * q(n-1)).integrate()
@cache
def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
def denom(c): return c.denominator if c%1 else 1
print([denom(kappa(n)) for n in range(15)])
A369993
Reciprocal of content of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 23, 24941, 1307261674, 62079371576837874658793, 67775687882486213674661973555079371183525163, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843
Offset: 0
q_5 = 1 + ( -35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8 ) / 2 and q_6 = ( 3575*X^8 - 5720*X^9 - 6292*X^10 + 19240*X^11 - 14300*X^12 + 3520*X^13 ) / 23.
Therefore, a(5)=2 and a(6)=23.
Cf.
A369992 (triangle of numerators).
-
from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci
@cache
def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
@cache
def Q(n): return (q(n).diff() * q(n-1)).integrate()
@cache
def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
def denom(c): return c.denominator if c%1 else 1
def A369993(n): return reduce(lcm,(denom(q(n).coeff(x,k)) for k in range(1<<(n>>1),1+fibonacci(n+1))))
print([A369993(n) for n in range(15)])
A369988
Decimal expansion of Mallows's constant or stribolic constant kappa (of order 1).
Original entry on oeis.org
2, 7, 8, 8, 7, 7, 0, 6, 1
Offset: 0
- N. J. A. Sloane, My Favorite Integer Sequences, in: C. Ding, T. Helleseth, H. Niederreiter (editors), Sequences and their Applications, Discrete Mathematics and Theoretical Computer Science, Springer, London (1999) 103-130.
- Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^{-1}, arXiv:2402.06618 [math.CO], 2024.
- Roland Miyamoto, Solution to the iterative differential equation -gamma*g' = g^{-1}, arXiv:2404.11455 [math.CA], 2024.
- Roland Miyamoto and J. W. Sander, Solving the iterative differential equation -gamma*g' = g^{-1}, in: H. Maier, J. & R. Steuding (eds.), Number Theory in Memory of Eduard Wirsing, Springer, 2023, pp. 223-236.
- N. J. A. Sloane, My favorite integer sequences, in: Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Colin Mallows, and Bjorn Poonen, Discussion of A011784. [Scans of pages 150-155 and 164 of Sloane's notebook "Lattices 77", from June-July 1997.]
Showing 1-4 of 4 results.
Comments