cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369990 Numerator of canonical iterated stribolic area Integral_{t=0..1} h_n(t) dt (of order 1).

Original entry on oeis.org

1, 1, 1, 3, 2, 161, 24941, 49675943612, 3267335346149361824147, 2507700451651989905962493021537936733790431031, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843
Offset: 0

Views

Author

Roland Miyamoto, Feb 07 2024

Keywords

Comments

a(n) = numerator of Integral_{t=0..1} h_n(t) dt, where h_0 = 1, h_1 = T(h_0), h_2 = T(h_1), ...:[0,1]->[0,1], the operator T is given by T(g)(x) := Integral_{y=x..1} g^*(y) dy / Integral_{y=0..1} g(y) dy and g^*(y) := sup g^{-1}[y,1] (pseudo-inverse).
Geometrically speaking, T rotates by 90 degrees before integrating, which is why we call h_0, h_1, h_2,... the canonical stribolic iterates (from Greek stribo=turn/twist).
Alternatively, a(n) can be calculated from the polynomial q_n := h_n ° ... ° h_1. Cf. alternative formula below.
The sequence (a(n)/A369991(n)) is strictly decreasing and converges to the stribolic constant kappa=A369988.
We observe that a(n) and a(n+1) are coprime for n = 0..22 with the sole exception of gcd(a(5),a(6)) = 7.

Examples

			h_2(x) = (1-x)^2, h_2^*(x) = 1 - sqrt(x) = -h_3'(x)/3, h_3(x) = 1 - 3x + 2x^(3/2), hence Integral_{t=0..1} h_2(t) dt = 1/3 and Integral_{t=0..1} h_3(t) dt = 3/10. Therefore a(2)=1 and a(3)=3.
		

Crossrefs

Cf. A369988 (decimal expansion of limit), A369991 (denominator).

Programs

  • Python
    from functools import cache; from sympy.abc import x
    @cache
    def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
    @cache
    def Q(n): return (q(n).diff() * q(n-1)).integrate()
    @cache
    def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
    def numer(c): return c.numerator if c%1 else c
    print([numer(kappa(n)) for n in range(15)])

Formula

a(0)=1, a(n) is the numerator of kappa_n := Integral_{t=0..1} h_n(t) dt where h_1(x):=1-x and h_{n+1}(x) := Integral_{t=x..1} h_n^*(t) dt / kappa_n for n=1,2,...; here, h_n^* denotes the compositional inverse of h_n.
Alternatively, the rational sequence (kappa_n) := (a(n)/A369991(n)) and the two polynomial sequences (q_n), (Q_n) together are determined by the following equations for n=1,2,...: kappa_0=1, q_0=X, q_1=1-X, Q_n(0)=0, Q_n' = q_n'*q_{n-1}, kappa_n = (-1)^n * Q_n(1), q_{n+1} = (n+1) mod 2 - Q_n / kappa_n.

A369991 Denominator of canonical iterated stribolic area Integral_{t=0..1} h_n(t) dt (of order 1).

Original entry on oeis.org

1, 2, 3, 10, 7, 572, 89148, 177918244665, 11711158115225119429452, 8990773234863161759100003096510729982749072312, 140048278006628885452600904137492554179859017924910241263151850844470542993943699969398879
Offset: 0

Views

Author

Roland Miyamoto, Feb 08 2024

Keywords

Comments

a(n) = denominator of Integral_{t=0..1} h_n(t) dt, where h_0 = 1, h_1 = T(h_0), h_2 = T(h_1), ...:[0,1]->[0,1], the operator T is given by T(g)(x) := Integral_{y=x..1} g^*(y) dy / Integral_{y=0..1} g(y)dy and g^*(y) := sup g^{-1}[y,1] (pseudo-inverse).
Geometrically speaking, T rotates by 90 degrees before integrating, which is why we call h_0, h_1, h_2, ... the canonical stribolic iterates (from Greek stribo=turn/twist).
Alternatively, a(n) can be calculated from the polynomial q_n := h_n ° ... ° h_1. Cf. alternative formula below.
The sequence (a(n)/A369991(n)) is strictly decreasing and converges to the stribolic constant kappa=A369988.

Examples

			h_2(x) = (1-x)^2, h_2^*(x) = 1 - sqrt(x) = - h_3'(x)/3, h_3(x) = 1 - 3x + 2x^(3/2), hence Integral_{t=0..1} h_2(t) dt = 1/3 and Integral_{t=0..1} h_3(t) dt = 3/10. Therefore a(2)=3 and a(3)=10.
		

Crossrefs

Cf. A369988 (decimal expansion of limit), A369990 (numerator).

Programs

  • Python
    from functools import cache; from sympy.abc import x
    @cache
    def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
    @cache
    def Q(n): return (q(n).diff() * q(n-1)).integrate()
    @cache
    def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
    def denom(c): return c.denominator if c%1 else 1
    print([denom(kappa(n)) for n in range(15)])

Formula

a(0)=1, a(n) is the denominator of kappa_n := Integral_{t=0..1} h_n(t) dt where h_1(x):=1-x and h_{n+1}(x) := Integral_{t=x..1} h_n^*(t) dt / kappa_n for n=1,2,...; here, h_n^* denotes the compositional inverse of h_n.
Alternatively, the rational sequence (kappa_n) := (A369990(n)/a(n)) and the two polynomial sequences (q_n), (Q_n) together are determined by the following equations for n=1,2,...: kappa_0=1, q_0=X, q_1=1-X, Q_n(0)=0, Q_n' = q_n'*q_{n-1}, kappa_n = (-1)^n * Q_n(1), q_{n+1} = (n+1) mod 2 - Q_n / kappa_n.

A369993 Reciprocal of content of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 23, 24941, 1307261674, 62079371576837874658793, 67775687882486213674661973555079371183525163, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843
Offset: 0

Views

Author

Roland Miyamoto, Mar 01 2024

Keywords

Comments

1/a(n) is the content of the polynomial q_n, whose (non-constant) numerator coefficients are given by A369992, that is, a(n)*q_n in Z[X] is primitive. (Proof in arXiv article, see link below.)

Examples

			q_5 = 1 + ( -35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8 ) / 2 and q_6 = ( 3575*X^8 - 5720*X^9 - 6292*X^10 + 19240*X^11 - 14300*X^12 + 3520*X^13 ) / 23.
Therefore, a(5)=2 and a(6)=23.
		

Crossrefs

Cf. A369992 (triangle of numerators).

Programs

  • Python
    from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci
    @cache
    def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
    @cache
    def Q(n): return (q(n).diff() * q(n-1)).integrate()
    @cache
    def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
    def denom(c): return c.denominator if c%1 else 1
    def A369993(n): return reduce(lcm,(denom(q(n).coeff(x,k)) for k in range(1<<(n>>1),1+fibonacci(n+1))))
    print([A369993(n) for n in range(15)])

Formula

1/a(n) = content of the polynomial q_n in Q[X] determined by the identities q_0 = X, q_1 = 1 - X, q_n(0) = n mod 2 and (A369990(n) / A369991(n)) * q_{n+1}' = -q_n' * q_{n-1} for n=1,2,...

A369988 Decimal expansion of Mallows's constant or stribolic constant kappa (of order 1).

Original entry on oeis.org

2, 7, 8, 8, 7, 7, 0, 6, 1
Offset: 0

Views

Author

Roland Miyamoto, Feb 07 2024

Keywords

Comments

This constant is the area under the unique bijective, differentiable function h:[0,1]->[0,1] satisfying -c*h' = h^{-1} (compositional inverse) for some c > 0. That is, kappa = Integral_{t=0..1} h(t) dt, and then we also have kappa = c = -1/h'(0).
Equivalently, 1/kappa = 3.5858... is the only a > 0 such that there exists a differentiable function g:[0,a]->[0,a] which becomes its own derivative when rotated 90 degrees clockwise about the origin (into the fourth quadrant; whence the names "stribola" for g and h and "stribolic constant" for kappa, from Greek stribo=turn/twist), namely g(x):=h(kappa*x)/kappa for 0 <= x <= a = 1/kappa.
In 1997, Colin Mallows observed and conjectured that the rows in Levine's triangle A012257 take on stribolic shape and that A011784(n+1)/(A011784(n)*A011784(n-1)) converges as n->oo. Presuming his conjecture, the limit would equal kappa, while Mallows estimated it to be "approximately ... 0.277", see A011784. Later, in 2006, Martin Fuller suggested 0.27887706... for the limit, based on a numerical iteration, see A012257.
Set kappa_n := A369990(n) / A369991(n) and theta_n := (kappa_n-kappa_{n+1}) / (kappa_{n-1}-kappa_n). Under the hypothesis that theta_{2m} < theta_{2m+2} < theta_{2*m+3} < theta_{2*m+1} for m=1,2,... (verified for all values known so far), we would obtain 0.27887706136895087 < kappa_{21}' < kappa < kappa_{22}' < 0.27887706136898083, which is sharper than formula (3) below. Here, the transformed sequence (kappa_n') = G(kappa_n) is defined via kappa_n' := (kappa_{n-1}*kappa_{n+1} - kappa_n^2) / (kappa_{n-1} - 2*kappa_n + kappa_{n+1}). (See first arXiv article for a proof of this conjecture-dependent statement.) Feeling even more adventurous, we could apply the transformation G four times and would obtain 0.278877061368975064775 < kappa_{19}'''' < kappa < kappa_{18}'''' < 0.278877061368975064815.
It is an open question whether kappa is rational or irrational, algebraic or transcendental.

Examples

			0.278877061...
		

References

  • N. J. A. Sloane, My Favorite Integer Sequences, in: C. Ding, T. Helleseth, H. Niederreiter (editors), Sequences and their Applications, Discrete Mathematics and Theoretical Computer Science, Springer, London (1999) 103-130.

Crossrefs

Formula

Set kappa_n := A369990(n) / A369991(n). Then
(1) kappa = lim_{n->oo}kappa_n = inf{kappa_n: n >= 0},
(2) kappa_n - 1 + kappa_n/kappa_{n-1} < kappa < kappa_n for n=1,2,...,
(3) 0.2788770612338 < kappa_{23} - 1 + kappa_{23}/kappa_{22} < kappa < kappa_{23} < 0.2788770613941.
Showing 1-4 of 4 results.