cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Roland Miyamoto

Roland Miyamoto's wiki page.

Roland Miyamoto has authored 6 sequences.

A369993 Reciprocal of content of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 23, 24941, 1307261674, 62079371576837874658793, 67775687882486213674661973555079371183525163, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843
Offset: 0

Author

Roland Miyamoto, Mar 01 2024

Keywords

Comments

1/a(n) is the content of the polynomial q_n, whose (non-constant) numerator coefficients are given by A369992, that is, a(n)*q_n in Z[X] is primitive. (Proof in arXiv article, see link below.)

Examples

			q_5 = 1 + ( -35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8 ) / 2 and q_6 = ( 3575*X^8 - 5720*X^9 - 6292*X^10 + 19240*X^11 - 14300*X^12 + 3520*X^13 ) / 23.
Therefore, a(5)=2 and a(6)=23.
		

Crossrefs

Cf. A369992 (triangle of numerators).

Programs

  • Python
    from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci
    @cache
    def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
    @cache
    def Q(n): return (q(n).diff() * q(n-1)).integrate()
    @cache
    def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
    def denom(c): return c.denominator if c%1 else 1
    def A369993(n): return reduce(lcm,(denom(q(n).coeff(x,k)) for k in range(1<<(n>>1),1+fibonacci(n+1))))
    print([A369993(n) for n in range(15)])

Formula

1/a(n) = content of the polynomial q_n in Q[X] determined by the identities q_0 = X, q_1 = 1 - X, q_n(0) = n mod 2 and (A369990(n) / A369991(n)) * q_{n+1}' = -q_n' * q_{n-1} for n=1,2,...

A369992 Irregular triangle read by rows: T(n,k) = (2^floor(n/2)+k)-th numerator coefficient of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1), for n=0,1,2,... and 0 <= k <= A000045(n+1) - 2^floor(n/2).

Original entry on oeis.org

1, -1, 1, -3, 2, 5, -4, -35, 28, 70, -100, 35, 3575, -5720, -6292, 19240, -14300, 3520, -13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800
Offset: 0

Author

Roland Miyamoto, Mar 01 2024

Keywords

Comments

The n-th row of the triangle contains 1 + A000045(n+1) - 2^floor(n/2) integers c_{2^floor(n/2)},...,c_{A000045(n+1)} forming a polynomial q_n = (n mod 2) + Sum_{i} c_i*X^i / A369993(n) that is related to A369990 and A369991 as follows: q_n = h_n ° ... ° h_1 (function composition), that is, h_n maps q_{n-1}(t) to q_n(t) for 0 <= t <= 1, and h_n has Integral_{x=0..1} h_n(x) dx = A369990(n)/A369991(n).
The gcd of each row in the triangle equals 1.
All previous statements are proved in the arXiv article, see link below.
Observation: In each of the 25 rows computed so far, there are no zeros and at most two consecutive entries of the same sign.

Examples

			q_5 = 1 + (-35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8) / 2 gives rise to row 5 (counting from 0) of the triangle (rows 0 to 7 are given):
          1;
         -1;
          1;
         -3,        2;
          5,       -4;
        -35,       28,       70,      -100,        35;
       3575,    -5720,    -6292,     19240,    -14300,       3520;
  -13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800;
		

Crossrefs

A369993 (denominator).

Programs

  • Python
    from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci
    @cache
    def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
    @cache
    def Q(n): return (q(n).diff() * q(n-1)).integrate()
    @cache
    def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
    def denom(c): return c.denominator if c%1 else 1
    def row(n): qn = q(n); k0 = 1<<(n>>1); k1 = 1+fibonacci(n+1); dn = reduce(lcm,(denom(qn.coeff(x,k)) for k in range(k0,k1))); return [qn.coeff(x,k)*dn for k in range(k0,k1)]
    for n in range(15): print(row(n))

Formula

The polynomials q_n = (n mod 2) + Sum_{k>=0} T(n,k)*X^(2^floor(n/2)+k) / A369993(n) are determined by the equations q_0=X, q_1=1-X, q_n(0) = n mod 2 and (A369990(n) / A369991(n)) * q_{n+1}' = -q_n' * q_{n-1} for n=1,2,...
Sum_k T(n,k) = (-1)^n * A369993(n) for n=0,1,2,...

A369991 Denominator of canonical iterated stribolic area Integral_{t=0..1} h_n(t) dt (of order 1).

Original entry on oeis.org

1, 2, 3, 10, 7, 572, 89148, 177918244665, 11711158115225119429452, 8990773234863161759100003096510729982749072312, 140048278006628885452600904137492554179859017924910241263151850844470542993943699969398879
Offset: 0

Author

Roland Miyamoto, Feb 08 2024

Keywords

Comments

a(n) = denominator of Integral_{t=0..1} h_n(t) dt, where h_0 = 1, h_1 = T(h_0), h_2 = T(h_1), ...:[0,1]->[0,1], the operator T is given by T(g)(x) := Integral_{y=x..1} g^*(y) dy / Integral_{y=0..1} g(y)dy and g^*(y) := sup g^{-1}[y,1] (pseudo-inverse).
Geometrically speaking, T rotates by 90 degrees before integrating, which is why we call h_0, h_1, h_2, ... the canonical stribolic iterates (from Greek stribo=turn/twist).
Alternatively, a(n) can be calculated from the polynomial q_n := h_n ° ... ° h_1. Cf. alternative formula below.
The sequence (a(n)/A369991(n)) is strictly decreasing and converges to the stribolic constant kappa=A369988.

Examples

			h_2(x) = (1-x)^2, h_2^*(x) = 1 - sqrt(x) = - h_3'(x)/3, h_3(x) = 1 - 3x + 2x^(3/2), hence Integral_{t=0..1} h_2(t) dt = 1/3 and Integral_{t=0..1} h_3(t) dt = 3/10. Therefore a(2)=3 and a(3)=10.
		

Crossrefs

Cf. A369988 (decimal expansion of limit), A369990 (numerator).

Programs

  • Python
    from functools import cache; from sympy.abc import x
    @cache
    def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
    @cache
    def Q(n): return (q(n).diff() * q(n-1)).integrate()
    @cache
    def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
    def denom(c): return c.denominator if c%1 else 1
    print([denom(kappa(n)) for n in range(15)])

Formula

a(0)=1, a(n) is the denominator of kappa_n := Integral_{t=0..1} h_n(t) dt where h_1(x):=1-x and h_{n+1}(x) := Integral_{t=x..1} h_n^*(t) dt / kappa_n for n=1,2,...; here, h_n^* denotes the compositional inverse of h_n.
Alternatively, the rational sequence (kappa_n) := (A369990(n)/a(n)) and the two polynomial sequences (q_n), (Q_n) together are determined by the following equations for n=1,2,...: kappa_0=1, q_0=X, q_1=1-X, Q_n(0)=0, Q_n' = q_n'*q_{n-1}, kappa_n = (-1)^n * Q_n(1), q_{n+1} = (n+1) mod 2 - Q_n / kappa_n.

A369990 Numerator of canonical iterated stribolic area Integral_{t=0..1} h_n(t) dt (of order 1).

Original entry on oeis.org

1, 1, 1, 3, 2, 161, 24941, 49675943612, 3267335346149361824147, 2507700451651989905962493021537936733790431031, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843
Offset: 0

Author

Roland Miyamoto, Feb 07 2024

Keywords

Comments

a(n) = numerator of Integral_{t=0..1} h_n(t) dt, where h_0 = 1, h_1 = T(h_0), h_2 = T(h_1), ...:[0,1]->[0,1], the operator T is given by T(g)(x) := Integral_{y=x..1} g^*(y) dy / Integral_{y=0..1} g(y) dy and g^*(y) := sup g^{-1}[y,1] (pseudo-inverse).
Geometrically speaking, T rotates by 90 degrees before integrating, which is why we call h_0, h_1, h_2,... the canonical stribolic iterates (from Greek stribo=turn/twist).
Alternatively, a(n) can be calculated from the polynomial q_n := h_n ° ... ° h_1. Cf. alternative formula below.
The sequence (a(n)/A369991(n)) is strictly decreasing and converges to the stribolic constant kappa=A369988.
We observe that a(n) and a(n+1) are coprime for n = 0..22 with the sole exception of gcd(a(5),a(6)) = 7.

Examples

			h_2(x) = (1-x)^2, h_2^*(x) = 1 - sqrt(x) = -h_3'(x)/3, h_3(x) = 1 - 3x + 2x^(3/2), hence Integral_{t=0..1} h_2(t) dt = 1/3 and Integral_{t=0..1} h_3(t) dt = 3/10. Therefore a(2)=1 and a(3)=3.
		

Crossrefs

Cf. A369988 (decimal expansion of limit), A369991 (denominator).

Programs

  • Python
    from functools import cache; from sympy.abc import x
    @cache
    def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
    @cache
    def Q(n): return (q(n).diff() * q(n-1)).integrate()
    @cache
    def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
    def numer(c): return c.numerator if c%1 else c
    print([numer(kappa(n)) for n in range(15)])

Formula

a(0)=1, a(n) is the numerator of kappa_n := Integral_{t=0..1} h_n(t) dt where h_1(x):=1-x and h_{n+1}(x) := Integral_{t=x..1} h_n^*(t) dt / kappa_n for n=1,2,...; here, h_n^* denotes the compositional inverse of h_n.
Alternatively, the rational sequence (kappa_n) := (a(n)/A369991(n)) and the two polynomial sequences (q_n), (Q_n) together are determined by the following equations for n=1,2,...: kappa_0=1, q_0=X, q_1=1-X, Q_n(0)=0, Q_n' = q_n'*q_{n-1}, kappa_n = (-1)^n * Q_n(1), q_{n+1} = (n+1) mod 2 - Q_n / kappa_n.

A369988 Decimal expansion of Mallows's constant or stribolic constant kappa (of order 1).

Original entry on oeis.org

2, 7, 8, 8, 7, 7, 0, 6, 1
Offset: 0

Author

Roland Miyamoto, Feb 07 2024

Keywords

Comments

This constant is the area under the unique bijective, differentiable function h:[0,1]->[0,1] satisfying -c*h' = h^{-1} (compositional inverse) for some c > 0. That is, kappa = Integral_{t=0..1} h(t) dt, and then we also have kappa = c = -1/h'(0).
Equivalently, 1/kappa = 3.5858... is the only a > 0 such that there exists a differentiable function g:[0,a]->[0,a] which becomes its own derivative when rotated 90 degrees clockwise about the origin (into the fourth quadrant; whence the names "stribola" for g and h and "stribolic constant" for kappa, from Greek stribo=turn/twist), namely g(x):=h(kappa*x)/kappa for 0 <= x <= a = 1/kappa.
In 1997, Colin Mallows observed and conjectured that the rows in Levine's triangle A012257 take on stribolic shape and that A011784(n+1)/(A011784(n)*A011784(n-1)) converges as n->oo. Presuming his conjecture, the limit would equal kappa, while Mallows estimated it to be "approximately ... 0.277", see A011784. Later, in 2006, Martin Fuller suggested 0.27887706... for the limit, based on a numerical iteration, see A012257.
Set kappa_n := A369990(n) / A369991(n) and theta_n := (kappa_n-kappa_{n+1}) / (kappa_{n-1}-kappa_n). Under the hypothesis that theta_{2m} < theta_{2m+2} < theta_{2*m+3} < theta_{2*m+1} for m=1,2,... (verified for all values known so far), we would obtain 0.27887706136895087 < kappa_{21}' < kappa < kappa_{22}' < 0.27887706136898083, which is sharper than formula (3) below. Here, the transformed sequence (kappa_n') = G(kappa_n) is defined via kappa_n' := (kappa_{n-1}*kappa_{n+1} - kappa_n^2) / (kappa_{n-1} - 2*kappa_n + kappa_{n+1}). (See first arXiv article for a proof of this conjecture-dependent statement.) Feeling even more adventurous, we could apply the transformation G four times and would obtain 0.278877061368975064775 < kappa_{19}'''' < kappa < kappa_{18}'''' < 0.278877061368975064815.
It is an open question whether kappa is rational or irrational, algebraic or transcendental.

Examples

			0.278877061...
		

References

  • N. J. A. Sloane, My Favorite Integer Sequences, in: C. Ding, T. Helleseth, H. Niederreiter (editors), Sequences and their Applications, Discrete Mathematics and Theoretical Computer Science, Springer, London (1999) 103-130.

Formula

Set kappa_n := A369990(n) / A369991(n). Then
(1) kappa = lim_{n->oo}kappa_n = inf{kappa_n: n >= 0},
(2) kappa_n - 1 + kappa_n/kappa_{n-1} < kappa < kappa_n for n=1,2,...,
(3) 0.2788770612338 < kappa_{23} - 1 + kappa_{23}/kappa_{22} < kappa < kappa_{23} < 0.2788770613941.

A119980 Order of the following permutation on 3n+1 symbols. Write the 3n+1 symbols horizontally into a 3-column grid and read them off vertically, i.e., column after column.

Original entry on oeis.org

1, 3, 6, 6, 11, 15, 52, 38, 51, 9, 360, 260, 35, 39, 364, 1932, 680, 532, 1122, 260, 2415, 3570, 168, 360, 71, 12285, 836, 12, 1680, 1155, 858, 936, 7956, 48300, 171120, 234, 4428, 235752, 712, 990, 119, 364182, 406, 11220, 412920, 25584, 476, 19998, 6486
Offset: 0

Author

Roland Miyamoto, Aug 03 2006

Keywords

Examples

			For n=2, the grid with 0..6 by rows is
   0 1 2
   3 4 5      first column is one longer
   6
Reading them by columns gives (0,3,6,1,4,2,5) which as a permutation has order 6, so a(2) = 6.
		

Crossrefs

The case for 2 columns is A002326.
Cf. A003572.

Programs

  • GAP
    # GAP / KANT / KASH
    # SpartaEncrypt(d,L) returns the list M obtained by writing L in d columns
    # and then concatenating these columns
    SpartaEncrypt := function(d,L)
    local len, i, M;
    len := Length(L);
    M := [];
    for i in [1..d] do
    Append(M,L{[i,d+i..d*IntQuo(len-i,d)+i]});
    od;
    return M;
    end;
    # SpartaOrd(d,m) computes the order of SpartEncrypt(d,[0..m-1])
    # in the group S_m
    SpartaOrd := function(d,m)
    local L, M, i;
    M := [0..m-1];
    L := [0..m-1];
    i := 0;
    repeat
    i := i + 1;
    L := SpartaEncrypt(d,L);
    until L=M;
    return i;
    end;
    d:=3; r:=1;
    a := List([0..60],n->SpartaOrd(d,d*n+r));
    
  • PARI
    P(n,w,j)={my(c=j%w); if(c==0, j/w, j\w + c*n + 1)}
    Follow(s,f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    CyclePoly(n,w,x)={my(q=0); for(i=0, w*n, my(l=Follow(i, j->P(n,w,j))); if(l, q+=x^l)); q}
    a(n)={my(q=CyclePoly(n, 3, x), m=1); for(i=1, poldegree(q), if(polcoef(q, i), m=lcm(m, i))); m} \\ Andrew Howroyd, Jan 04 2024