Roland Miyamoto has authored 6 sequences.
A369993
Reciprocal of content of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 23, 24941, 1307261674, 62079371576837874658793, 67775687882486213674661973555079371183525163, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843
Offset: 0
q_5 = 1 + ( -35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8 ) / 2 and q_6 = ( 3575*X^8 - 5720*X^9 - 6292*X^10 + 19240*X^11 - 14300*X^12 + 3520*X^13 ) / 23.
Therefore, a(5)=2 and a(6)=23.
Cf.
A369992 (triangle of numerators).
-
from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci
@cache
def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
@cache
def Q(n): return (q(n).diff() * q(n-1)).integrate()
@cache
def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
def denom(c): return c.denominator if c%1 else 1
def A369993(n): return reduce(lcm,(denom(q(n).coeff(x,k)) for k in range(1<<(n>>1),1+fibonacci(n+1))))
print([A369993(n) for n in range(15)])
A369992
Irregular triangle read by rows: T(n,k) = (2^floor(n/2)+k)-th numerator coefficient of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1), for n=0,1,2,... and 0 <= k <= A000045(n+1) - 2^floor(n/2).
Original entry on oeis.org
1, -1, 1, -3, 2, 5, -4, -35, 28, 70, -100, 35, 3575, -5720, -6292, 19240, -14300, 3520, -13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800
Offset: 0
q_5 = 1 + (-35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8) / 2 gives rise to row 5 (counting from 0) of the triangle (rows 0 to 7 are given):
1;
-1;
1;
-3, 2;
5, -4;
-35, 28, 70, -100, 35;
3575, -5720, -6292, 19240, -14300, 3520;
-13856700, 22170720, 24387792, -74574240, 217088300, -401631120, -382444920, 2019752592, -1656568485, -1470440400, 3671101720, -2832601200, 1025395800, -147804800;
-
from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci
@cache
def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
@cache
def Q(n): return (q(n).diff() * q(n-1)).integrate()
@cache
def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
def denom(c): return c.denominator if c%1 else 1
def row(n): qn = q(n); k0 = 1<<(n>>1); k1 = 1+fibonacci(n+1); dn = reduce(lcm,(denom(qn.coeff(x,k)) for k in range(k0,k1))); return [qn.coeff(x,k)*dn for k in range(k0,k1)]
for n in range(15): print(row(n))
A369991
Denominator of canonical iterated stribolic area Integral_{t=0..1} h_n(t) dt (of order 1).
Original entry on oeis.org
1, 2, 3, 10, 7, 572, 89148, 177918244665, 11711158115225119429452, 8990773234863161759100003096510729982749072312, 140048278006628885452600904137492554179859017924910241263151850844470542993943699969398879
Offset: 0
h_2(x) = (1-x)^2, h_2^*(x) = 1 - sqrt(x) = - h_3'(x)/3, h_3(x) = 1 - 3x + 2x^(3/2), hence Integral_{t=0..1} h_2(t) dt = 1/3 and Integral_{t=0..1} h_3(t) dt = 3/10. Therefore a(2)=3 and a(3)=10.
-
from functools import cache; from sympy.abc import x
@cache
def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
@cache
def Q(n): return (q(n).diff() * q(n-1)).integrate()
@cache
def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
def denom(c): return c.denominator if c%1 else 1
print([denom(kappa(n)) for n in range(15)])
A369990
Numerator of canonical iterated stribolic area Integral_{t=0..1} h_n(t) dt (of order 1).
Original entry on oeis.org
1, 1, 1, 3, 2, 161, 24941, 49675943612, 3267335346149361824147, 2507700451651989905962493021537936733790431031, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843
Offset: 0
h_2(x) = (1-x)^2, h_2^*(x) = 1 - sqrt(x) = -h_3'(x)/3, h_3(x) = 1 - 3x + 2x^(3/2), hence Integral_{t=0..1} h_2(t) dt = 1/3 and Integral_{t=0..1} h_3(t) dt = 3/10. Therefore a(2)=1 and a(3)=3.
-
from functools import cache; from sympy.abc import x
@cache
def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1
@cache
def Q(n): return (q(n).diff() * q(n-1)).integrate()
@cache
def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x
def numer(c): return c.numerator if c%1 else c
print([numer(kappa(n)) for n in range(15)])
A369988
Decimal expansion of Mallows's constant or stribolic constant kappa (of order 1).
Original entry on oeis.org
2, 7, 8, 8, 7, 7, 0, 6, 1
Offset: 0
- N. J. A. Sloane, My Favorite Integer Sequences, in: C. Ding, T. Helleseth, H. Niederreiter (editors), Sequences and their Applications, Discrete Mathematics and Theoretical Computer Science, Springer, London (1999) 103-130.
- Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^{-1}, arXiv:2402.06618 [math.CO], 2024.
- Roland Miyamoto, Solution to the iterative differential equation -gamma*g' = g^{-1}, arXiv:2404.11455 [math.CA], 2024.
- Roland Miyamoto and J. W. Sander, Solving the iterative differential equation -gamma*g' = g^{-1}, in: H. Maier, J. & R. Steuding (eds.), Number Theory in Memory of Eduard Wirsing, Springer, 2023, pp. 223-236.
- N. J. A. Sloane, My favorite integer sequences, in: Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Colin Mallows, and Bjorn Poonen, Discussion of A011784. [Scans of pages 150-155 and 164 of Sloane's notebook "Lattices 77", from June-July 1997.]
A119980
Order of the following permutation on 3n+1 symbols. Write the 3n+1 symbols horizontally into a 3-column grid and read them off vertically, i.e., column after column.
Original entry on oeis.org
1, 3, 6, 6, 11, 15, 52, 38, 51, 9, 360, 260, 35, 39, 364, 1932, 680, 532, 1122, 260, 2415, 3570, 168, 360, 71, 12285, 836, 12, 1680, 1155, 858, 936, 7956, 48300, 171120, 234, 4428, 235752, 712, 990, 119, 364182, 406, 11220, 412920, 25584, 476, 19998, 6486
Offset: 0
For n=2, the grid with 0..6 by rows is
0 1 2
3 4 5 first column is one longer
6
Reading them by columns gives (0,3,6,1,4,2,5) which as a permutation has order 6, so a(2) = 6.
-
# GAP / KANT / KASH
# SpartaEncrypt(d,L) returns the list M obtained by writing L in d columns
# and then concatenating these columns
SpartaEncrypt := function(d,L)
local len, i, M;
len := Length(L);
M := [];
for i in [1..d] do
Append(M,L{[i,d+i..d*IntQuo(len-i,d)+i]});
od;
return M;
end;
# SpartaOrd(d,m) computes the order of SpartEncrypt(d,[0..m-1])
# in the group S_m
SpartaOrd := function(d,m)
local L, M, i;
M := [0..m-1];
L := [0..m-1];
i := 0;
repeat
i := i + 1;
L := SpartaEncrypt(d,L);
until L=M;
return i;
end;
d:=3; r:=1;
a := List([0..60],n->SpartaOrd(d,d*n+r));
-
P(n,w,j)={my(c=j%w); if(c==0, j/w, j\w + c*n + 1)}
Follow(s,f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
CyclePoly(n,w,x)={my(q=0); for(i=0, w*n, my(l=Follow(i, j->P(n,w,j))); if(l, q+=x^l)); q}
a(n)={my(q=CyclePoly(n, 3, x), m=1); for(i=1, poldegree(q), if(polcoef(q, i), m=lcm(m, i))); m} \\ Andrew Howroyd, Jan 04 2024
Comments