A369993 Reciprocal of content of the polynomial q_n used to parametrize the canonical stribolic iterates h_n (of order 1).
1, 1, 1, 1, 1, 2, 23, 24941, 1307261674, 62079371576837874658793, 67775687882486213674661973555079371183525163, 39058362193701767718721504578116138158143785410766642680982462728116470023287868511995843
Offset: 0
Examples
q_5 = 1 + ( -35*X^4 + 28*X^5 + 70*X^6 - 100*X^7 + 35*X^8 ) / 2 and q_6 = ( 3575*X^8 - 5720*X^9 - 6292*X^10 + 19240*X^11 - 14300*X^12 + 3520*X^13 ) / 23. Therefore, a(5)=2 and a(6)=23.
Links
- Roland Miyamoto, Table of n, a(n) for n = 0..15
- Roland Miyamoto, Table of n, a(n) for n = 0..24
- Roland Miyamoto, Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^{-1}, arXiv:2402.06618 [math.CO], 2024.
Programs
-
Python
from functools import cache, reduce; from sympy.abc import x; from sympy import lcm, fibonacci @cache def kappa(n): return (1-(n%2)*2) * Q(n).subs(x,1) if n else 1 @cache def Q(n): return (q(n).diff() * q(n-1)).integrate() @cache def q(n): return (1-x if n==1 else n%2-Q(n-1)/kappa(n-1)) if n else x def denom(c): return c.denominator if c%1 else 1 def A369993(n): return reduce(lcm,(denom(q(n).coeff(x,k)) for k in range(1<<(n>>1),1+fibonacci(n+1)))) print([A369993(n) for n in range(15)])
Comments