cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370015 Expansion of A(x) = Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2).

Original entry on oeis.org

1, 3, 0, 22, 0, 0, 344, 0, 0, 0, 10944, 0, 0, 0, 0, 699392, 0, 0, 0, 0, 0, 89489408, 0, 0, 0, 0, 0, 0, 22907191296, 0, 0, 0, 0, 0, 0, 0, 11728213508096, 0, 0, 0, 0, 0, 0, 0, 0, 12009621912813568, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24595670493070098432, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100743830310818104213504
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2024

Keywords

Comments

Equals the self-convolution cube of A370016.

Examples

			G.f.: A(x) = 1 + 3*x + 22*x^3 + 344*x^6 + 10944*x^10 + 699392*x^15 + 89489408*x^21 + 22907191296*x^28 + 11728213508096*x^36 + ... + 2^(n*(n-1)/2)*(1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) + ...
The g.f. A(x) equals the infinite product
A(x) = (1 + x)*(1 - 2*x)*(1 + 2^2*x) * (1 + 2*x^2)*(1 - 2^2*x^2)*(1 + 2^3*x^2) * (1 + 2^2*x^3)*(1 - 2^3*x^3)*(1 + 2^4*x^3) * (1 + 2^3*x^4)*(1 - 2^4*x^4)*(1 + 2^5*x^4) * ...
equivalently,
A(x) = (1 + 3*x - 6*x^2 - 8*x^3) * (1 + 6*x^2 - 24*x^4 - 64*x^6) * (1 + 12*x^3 - 96*x^6 - 512*x^9) * (1 + 24*x^4 - 384*x^8 - 4096*x^12 ) * (1 + 48*x^5 - 1536*x^10 - 32768*x^15) * ...
Notice that the cube root of A(x) yields an integer series
A(x)^(1/3) = 1 + x - x^2 + 9*x^3 - 18*x^4 + 44*x^5 - 54*x^6 + 350*x^7 - 1359*x^8 + 3789*x^9 - 9585*x^10 + 42489*x^11 - 163900*x^12 + ... + A370016(n)*x^n + ...
		

Crossrefs

Cf. A370016.

Programs

  • PARI
    {a(n) = my(A);
    A = prod(m=1, n+1, (1 + 2^(m-1)*x^m) * (1 - 2^m*x^m) * (1 + 2^(m+1)*x^m) +x*O(x^n));
    polcoeff(H=A, n)}
    for(n=0, 66, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2).
(2) A(x) = Product_{n>=1} (1 + 2^(n-1)*x^n) * (1 - 2^n*x^n) * (1 + 2^(n+1)*x^n), by the Jacobi triple product identity.
(3) A(x) = Product_{n>=1} F( 2^(n-1)*x^n ), where F(x) = (1 + 3*x - 6*x^2 - 8*x^3).