A370020 Table in which the g.f. of row n, R(n,x), satisfies Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2), for n >= 1, as read by antidiagonals.
1, 1, 1, 1, 2, 4, 1, 3, 7, 9, 1, 4, 12, 25, 22, 1, 5, 19, 53, 85, 63, 1, 6, 28, 99, 234, 301, 155, 1, 7, 39, 169, 529, 1041, 1086, 415, 1, 8, 52, 269, 1054, 2853, 4711, 3927, 1124, 1, 9, 67, 405, 1917, 6667, 15566, 21573, 14328, 2957, 1, 10, 84, 583, 3250, 13893, 42627, 85879, 99484, 52724, 8047, 1, 11, 103, 809, 5209, 26541, 101830, 275211, 477716, 461657, 194915, 21817
Offset: 1
Examples
This table of coefficients T(n,k) of x^k in R(n,x), n >= 1, k >= 1, begins: A370021: [1, 1, 4, 9, 22, 63, 155, 415, ...]; A370022: [1, 2, 7, 25, 85, 301, 1086, 3927, ...]; A370023: [1, 3, 12, 53, 234, 1041, 4711, 21573, ...]; A370024: [1, 4, 19, 99, 529, 2853, 15566, 85879, ...]; A370025: [1, 5, 28, 169, 1054, 6667, 42627, 275211, ...]; A370026: [1, 6, 39, 269, 1917, 13893, 101830, 753255, ...]; A370027: [1, 7, 52, 405, 3250, 26541, 219311, 1828657, ...]; A370028: [1, 8, 67, 583, 5209, 47341, 435366, 4039863, ...]; A370029: [1, 9, 84, 809, 7974, 79863, 809131, 8270199, ...]; A370042: [1, 10, 103, 1089, 11749, 128637, 1423982, 15898231, ...]; ... where the n-th row function R(n,x) satisfies Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..1275
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
Crossrefs
Programs
-
PARI
{T(n,k) = my(A=[0,1]); for(i=0,k, A = concat(A,0); A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + n*Ser(A))^m ) - 1 - (n+2)*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/n ); A[k+1]} for(n=1,12, for(k=1,10, print1(T(n,k),", "));print(""))
Formula
The n-th row g.f. R(n,x) = Sum_{k>=1} T(n,k)*x^k satisfies the following formulas.
(1) Sum_{k=-oo..+oo} (-1)^k * (x^k + n*R(n,x))^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
(2) Sum_{k=-oo..+oo} (-1)^k * x^k * (x^k + n*R(n,x))^(k-1) = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
(3) Sum_{k=-oo..+oo} (-1)^k * x^k * (x^k + n*R(n,x))^k = 0.
(4) Sum_{k=-oo..+oo} (-1)^k * x^(k^2) / (1 + n*R(n,x)*x^k)^k = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
(5) Sum_{k=-oo..+oo} (-1)^k * x^(k^2) / (1 + n*R(n,x)*x^k)^(k+1) = 1 + (n+2)*Sum_{k>=1} (-1)^k * x^(k^2).
(6) Sum_{k=-oo..+oo} (-1)^k * x^(k*(k+1)) / (1 + n*R(n,x)*x^k)^(k+1) = 0.
Comments