cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370023 Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 3*A(x))^n = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).

Original entry on oeis.org

1, 3, 12, 53, 234, 1041, 4711, 21573, 99484, 461657, 2154591, 10102701, 47555840, 224624016, 1064183887, 5055060411, 24068888061, 114841741098, 548992775523, 2628924592737, 12608597616161, 60558351876803, 291238387762452, 1402314223189959, 6759651098793285, 32617445956236720
Offset: 1

Views

Author

Paul D. Hanna, Feb 09 2024

Keywords

Comments

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

Examples

			G.f.: A(x) = x + 3*x^2 + 12*x^3 + 53*x^4 + 234*x^5 + 1041*x^6 + 4711*x^7 + 21573*x^8 + 99484*x^9 + 461657*x^10 + 2154591*x^11 + 10102701*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 3*A(x))^n = 1 - 5*x + 5*x^4 - 5*x^9 + 5*x^16 - 5*x^25 + 5*x^36 - 5*x^49 +- ...
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05001316702398359971645418498866690386932728399152644693...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 3*A)^n = (5*(Pi/2)^(1/4)/gamma(3/4) - 3)/2 = 0.78394784539029205351810...
(V.2) Let A = A(exp(-2*Pi)) = 0.001877983557643657576778844718492775838546798118866577860...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 3*A)^n = (5*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 3)/2 = 0.990662786402267839474...
(V.3) Let A = A(-exp(-Pi)) = -0.03842474691590612761867206263978602696713545771404819339...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 3*A)^n = (5*Pi^(1/4)/gamma(3/4) - 3)/2 = 1.216087028033270036438...
(V.4) Let A = A(-exp(-2*Pi)) = -0.001857058214293085256892081751882664927312970576990961749...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 3*A)^n = (5*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 3)/2 = 1.009337213719347727619...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 3*Ser(A))^m ) - 1 - 5*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/3 ); A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 3*A(x))^n = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 3*A(x))^(n-1) = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 3*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 3*A(x)*x^n)^n = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 3*A(x)*x^n)^(n+1) = 1 + 5*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 3*A(x)*x^n)^(n+1) = 0.