cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370048 Number of binary strings of length n in which the number of substrings 00 is one more than that of substrings 01.

Original entry on oeis.org

0, 0, 1, 1, 2, 6, 10, 18, 40, 76, 141, 285, 558, 1066, 2097, 4121, 8000, 15660, 30763, 60171, 117918, 231690, 454816, 893208, 1756688, 3455580, 6799195, 13388587, 26375466, 51974798, 102470402, 202108730, 398756664, 787025260, 1553900235, 3068937675, 6062944710, 11981429394, 23683822694, 46828287038
Offset: 0

Views

Author

Max Alekseyev, Apr 30 2024

Keywords

Crossrefs

Programs

  • PARI
    { a370048(n) = (n > 1) * sum(m=0,(n-1)\3, binomial(2*m,m+1) * binomial(n-1-2*m,m) + binomial(2*m+1,m) * binomial(n-2-2*m,m) ); }
    
  • Python
    from math import comb
    def A370048(n): return 0 if n<2 else 1+sum((x:=comb((k:=m<<1),m+1)*comb(n-1-k,m))+x*(k+1)*(n-1-3*m)//(m*(n-1-k)) for m in range(1,(n+2)//3)) # Chai Wah Wu, May 01 2024

Formula

For n >= 2, a(n) = Sum_{m=0..floor((n-1)/3)} binomial(2*m,m+1) * binomial(n-1-2*m,m) + binomial(2*m+1,m) * binomial(n-2-2*m,m).
For n >= 4, a(n) = ( (n-2)*(2*n-1)*(n^2-n-4)*a(n-1) - (n^2-5*n+2)*(n^2+n-4)*a(n-2) + 2*(n-3)*n^2*(2*n-3)*a(n-3) - 4*(n-3)*(n-1)^2*n*a(n-4) ) / (n-2)^2 / (n-1) / (n+2).
a(n) = 2*A371358(n+1) - A371358(n+2) + A163493(n+1) - A163493(n).
G.f. ((1-x^2-2*x^3)*(1-2*x+x^2-4*x^3+4*x^4)^(-1/2) - 1 - x)/x^2/2, which can be expressed in terms of g.f. C(x) = (1-sqrt(1-4*x))/x/2 for Catalan number (A000108) as x*((x+1)*C(x^3/(1-x))-1)/(1-x-2*x^3*C(x^3/(1-x))).