cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370049 Square array A(n, k), n, k >= 0, read by antidiagonals; for any n and k >= 0 with respective binary expansions Sum_{i > 0} b_i*2^(i-1) and Sum_{i > 0} c_i*2^(i-1), the binary expansion of A(n, k) is Sum_{i > 0} d_i*2^(i-1) with d_i = (Sum_{k divides i} b_k*c_{i/k}) mod 2 for any i > 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 8, 3, 0, 0, 4, 10, 10, 4, 0, 0, 5, 32, 9, 32, 5, 0, 0, 6, 34, 36, 36, 34, 6, 0, 0, 7, 40, 39, 256, 39, 40, 7, 0, 0, 8, 42, 46, 260, 260, 46, 42, 8, 0, 0, 9, 128, 45, 288, 257, 288, 45, 128, 9, 0, 0, 10, 130, 136, 292, 294, 294, 292, 136, 130, 10, 0
Offset: 0

Views

Author

Rémy Sigrist, Apr 30 2024

Keywords

Comments

The set of nonnegative integers equipped with A form a commutative monoid.

Examples

			Array A(n, k) begins:
  n\k | 0   1    2    3     4     5     6     7      8      9     10
  ----+-------------------------------------------------------------
    0 | 0   0    0    0     0     0     0     0      0      0      0
    1 | 0   1    2    3     4     5     6     7      8      9     10
    2 | 0   2    8   10    32    34    40    42    128    130    136
    3 | 0   3   10    9    36    39    46    45    136    139    130
    4 | 0   4   32   36   256   260   288   292   2048   2052   2080
    5 | 0   5   34   39   260   257   294   291   2056   2061   2090
    6 | 0   6   40   46   288   294   264   270   2176   2182   2216
    7 | 0   7   42   45   292   291   270   265   2184   2191   2210
    8 | 0   8  128  136  2048  2056  2176  2184  32768  32776  32896
    9 | 0   9  130  139  2052  2061  2182  2191  32776  32769  32906
   10 | 0  10  136  130  2080  2090  2216  2210  32896  32906  32776
		

Crossrefs

Programs

  • PARI
    bits(n) = { my (b=vector(hammingweight(n))); for (k=1, #b, n-=2^b[k]=valuation(n,2)); return (b); }
    A(n, k) = { my (bn = bits(2*n), bk = bits(2*k), v = 0, e); for (i = 1, #bn, for (j = 1, #bk, e = bn[i] * bk[j] - 1; v = bitxor(v, 2^e););); return (v); }

Formula

A(n, k) = A(k, n).
A(m, A(n, k)) = A(A(m, n), k).
A(m XOR n, k) = A(m, k) XOR A(n, k) (where XOR denotes the bitwise XOR operator).
A000120(A(n, 2^k)) = A000120(n).
A(n, 0) = 0.
A(n, 1) = n.
A(n, 2) = A062880(n).