A370050 Square array read by ascending antidiagonals: T(n,k) is the size of the group Z_p*/(Z_p*)^k, where p = prime(n), and Z_p is the ring of p-adic integers.
1, 1, 4, 1, 2, 1, 1, 2, 3, 8, 1, 2, 1, 2, 1, 1, 2, 3, 4, 1, 4, 1, 2, 1, 2, 5, 6, 1, 1, 2, 3, 2, 1, 2, 1, 16, 1, 2, 1, 4, 5, 6, 1, 2, 1, 1, 2, 3, 4, 1, 2, 7, 4, 9, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 10, 1, 8, 1, 2, 3, 4, 1, 6, 1, 4, 1, 2, 1, 6, 1
Offset: 1
Examples
Table reads 1, 4, 1, 8, 1, 4, 1, 16, 1, 4 1, 2, 3, 2, 1, 6, 1, 2, 9, 2 1, 2, 1, 4, 5, 2, 1, 4, 1, 10 1, 2, 3, 2, 1, 6, 7, 2, 3, 2 1, 2, 1, 2, 5, 2, 1, 2, 1, 10 1, 2, 3, 4, 1, 6, 1, 4, 3, 2 1, 2, 1, 4, 1, 2, 1, 8, 1, 2 1, 2, 3, 2, 1, 6, 1, 2, 9, 2 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 1, 2, 1, 4, 1, 2, 7, 4, 1, 2 For p = prime(1) = 2 and k = 2, we have Z_p*/(Z_p*)^k = Z_2*/(1+8Z_2) = (Z/8Z)*/(1+8Z) = C_2 X C_2, so T(1,2) = 4. For p = prime(2) = 3 and k = 3, we have Z_p*/(Z_p*)^k = Z_3*/((1+9Z_3) U (8+9Z_3)) = (Z/9Z)*/((1+9Z) U (8+9Z)) = C_3, so T(2,3) = 3.
Links
- Jianing Song, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals)
Programs
-
PARI
T(n,k) = my(p = prime(n), e = valuation(k,p)); p^e*gcd(p-1,k/p^e) * if(p==2 && e>=1, 2, 1)
Formula
Write k = p^e * k' with k' not being divisible by p, and p = prime(n). If p is odd, then T(n,k) = p^e * gcd(p-1,k'). If p = 2 and k is odd, then T(n,k) = 1. If p = 2 and k is even, then T(n,k) = 2^(e+1).
Comments